1. 電泳漆超濾過多會不會影響表面品質
流速
流速是指原液在膜表面上流動的線速度,是超濾膜系統中一項重要操作參數。流速較大時,不但造成能量浪費和產生過大壓力降,還會加速超濾膜系統膜分裂性能的衰退。反之,如果流速較小,截留物在膜表面形成的邊界層厚度增大,引起濃度極化現象,既影響了透水速率,又影響了透水質量。最佳流速是根據實驗來確定的。在允許壓力范圍內,提高供給水量,選擇最高流速,有利於中空纖維超濾膜系統膜性能的保證。
壓力和壓力降
中空纖維超濾膜系統膜的工作壓力范圍為0.1至0.6MPa,是泛指在超濾膜系統的定義域內,處理溶液通常所使用的工作壓力。分離不同分子量的物質,需要選用相應截留分子量的超濾膜系統膜,則操作壓力也有所不同
回收比和濃縮水排放量
在超濾膜系統中,回收比與濃縮水排放量是一對相互制約的因素。回收比是指透過水量與供給量之比率,濃縮水排放量是指未透過膜而排出的水量。因為供給水量等於濃縮水與透過水量之和,所以如果濃縮水排放量大,回收就比較小。為了保證超濾膜系統正常運行,應規定組件最小濃縮水排放量及最大回收比。
工作溫度
超濾膜系統膜的透水能力隨著溫度升高而增大,一般水溶液其粘度隨著溫度而降低,從而降低了流動的阻力,相應提高了透水速率。在工程設計中應考慮工作現場供給液的實際溫度。特別是季節的變化,當溫度過低時應考慮溫度的調節,否則隨著溫度的變化其透水率有可能變化幅度在50%左右,此外過高的溫度將影響膜的性能。通常情況下超濾膜系統膜的工作溫度應在25±5℃,需要在較高溫度狀態下工作則可選用耐高溫膜材料及外殼材料。
2. 多糖會堵超濾膜嗎
是否堵膜考慮兩個方面,1、過濾孔徑大小 2、過濾物質是否會粘附架橋, 多糖分子量一般內不會超過10000 現有容超濾膜截流分子量一般范圍6000-50萬之間(有廠家聲稱可做到2000、3000),如果是單純的多糖溶於水,只要選擇大於多糖分子量的過濾孔徑,一般是不會堵的 其次就是考慮溶液粘度 每個廠家都會根據自己產品特性提粘度要求,一般要求不超過20
3. 超濾膜的出水越來越小,清洗效果不佳,循環流量上升,壓力基本不變,就是產水不斷減少,有沒有人懂這個是
1.溫度來對產水量的影響:如果水溫自升高,水分子的活性增加,粘度降低,導致產水量增加,水溫降低,產水量也減少。也就是說,水的產量會隨著溫度的變化而變化。
2.操作壓力對產水量的影響:當壓力值低於0.3 MPa時,超濾膜的產水量會隨著壓力的增加而增加,兩者是成正比的,但一旦壓力值超過這個值,產水量就不會再發生變化,主要是因為壓力太高,這導致了超濾膜的透水阻力增加。
3.流速對產水量的影響:當流速過快時,產水量也會有一些小的變化,但變化不是很明顯,但流速過慢會堵塞超濾膜,所以有必要很好地控制流速。
4.水濁度對產水量的影響:實踐證明,隨著進水濁度的增加,超濾膜的產水量會下降,當濁度達到一定程度時,會堵塞超濾膜,使其無法正常工作。
4. 超濾膜分離實驗中,什麼是濃度極差
隨著超濾膜抄使用時間的襲增加,膜的通量會逐漸減小,濃差極化現象就是引起這種現象的原因之一,掌握其發生機理和降低這種現象發生的具體措施,對超濾膜膜分離的過程是十分重要的。
那麼超濾膜濃差極化有哪些危害呢?
1.濃差極化使膜表面溶質濃度增高,引起滲透壓的增大,從而減小傳質驅動力。
2.當膜表面溶質濃度達到其飽和濃度時,會在膜表面形成沉積或凝膠層,增加透過阻力。
3.膜表面沉積層或凝膠層的形成會改變膜的分離特性。
4.當有機溶質在膜表面達到一定濃度時有可能對膜發生溶脹或溶解,惡化膜的性能。
5.嚴重的濃差極化導致結晶析出,阻塞流道,運行惡化。
5. 齒輪油過濾後粘度降低是什麼原因
粘度降低了,說明齒輪油里邊的添加劑成分已經減少,如果繼續使用,容易油膜破專裂導致齒面磨損,屬發現黏度降低以後應該盡快更換齒輪油,以免機器受傷。
更換齒輪油時候應該盡量清理齒輪箱,舊油里邊混入新油,新油會很快報廢,最好是淘干油以後用煤油清洗一下,然後用吸氣槍吸干,加入新油以後盡快關上齒輪箱,因為齒輪油里邊的添加劑有的會受到氧化的影響,導致黏度下降或者潤滑效果降低。
如果是低速重載齒輪,直接用黃甘油混合部分石蠟也可以。
6. 怎樣過濾特別粘稠的液體
過濾有點風險的樣子,主要是這種粘稠的液體容易堵住超濾膜表面的膜孔,不利專於過濾下來的雜質清屬理,最好是平板式和中心孔大的管式,比較容易能排出。過濾掉細菌是沒問題的,多肽級的大分子不行。而且有個問題,就是過濾速度不會很快,粘度越高越慢,需要大量的膜面積。
7. 有沒有搞膜過濾的老師,請問一下超濾膜能不能過濾比較粘稠的液體》
過濾有點風險的樣子,主要是這種粘稠的液體容易堵住超濾膜表面的膜孔,不利於過濾下來的雜質清理,最好是平板式和中心孔大的管式,比較容易能排出。過濾掉細菌是沒問題的,多肽級的大分子不行。而且有個問題,就是過濾速度不會很快,粘度越高越慢,需要大量的膜面積。
8. 電泳漆超濾膜使用參數是多少
流速
流速是指原液在膜表面上流動的線速度,是超濾膜系統中一項重要操作參數。流速較大時,不但造成能量浪費和產生過大壓力降,還會加速超濾膜系統膜分裂性能的衰退。反之,如果流速較小,截留物在膜表面形成的邊界層厚度增大,引起濃度極化現象,既影響了透水速率,又影響了透水質量。最佳流速是根據實驗來確定的。在允許壓力范圍內,提高供給水量,選擇最高流速,有利於中空纖維超濾膜系統膜性能的保證。
壓力和壓力降
中空纖維超濾膜系統膜的工作壓力范圍為0.1至0.6MPa,是泛指在超濾膜系統的定義域內,處理溶液通常所使用的工作壓力。分離不同分子量的物質,需要選用相應截留分子量的超濾膜系統膜,則操作壓力也有所不同
回收比和濃縮水排放量
在超濾膜系統中,回收比與濃縮水排放量是一對相互制約的因素。回收比是指透過水量與供給量之比率,濃縮水排放量是指未透過膜而排出的水量。因為供給水量等於濃縮水與透過水量之和,所以如果濃縮水排放量大,回收就比較小。為了保證超濾膜系統正常運行,應規定組件最小濃縮水排放量及最大回收比。
工作溫度
超濾膜系統膜的透水能力隨著溫度升高而增大,一般水溶液其粘度隨著溫度而降低,從而降低了流動的阻力,相應提高了透水速率。在工程設計中應考慮工作現場供給液的實際溫度。特別是季節的變化,當溫度過低時應考慮溫度的調節,否則隨著溫度的變化其透水率有可能變化幅度在50%左右,此外過高的溫度將影響膜的性能。通常情況下超濾膜系統膜的工作溫度應在25±5℃,需要在較高溫度狀態下工作則可選用耐高溫膜材料及外殼材料。
壓力的影響
進水壓力影響RO和NF膜的產水通量和脫鹽率,我們知道滲透是指水分子從稀溶液側透過膜進入濃溶液側的流動,反滲透和納濾技術即在進水水流側施加操作壓力以克服自然滲透壓。當高於滲透壓的操作壓力施加在濃溶液側時,水分子自然滲透的流動方向就會被逆轉,部分進水(濃溶液)通過膜成為稀溶液側的凈化產水。透過膜的水通量增加與進水壓力的增加存在直線關系,增加進水壓力也增加了脫鹽率,但是兩者間的變化關系沒有線性關系,而且達到一定程度後脫鹽率將不再增加。
由於RO和NF膜對進水中的溶解性鹽類不可能絕對完美地截留,總有一定量的透過量,隨著壓力的增加,因為膜透過水的速率比傳遞鹽分的速率快,這種透鹽率的增加得到迅速地克服。但是,通過增加進水壓力提高鹽分的排除率有上限限制,正如圖1脫鹽率曲線的平坦部分所示那樣,超過一定的壓力值,脫鹽率不再增加,某些鹽分還會與水分子耦合一同透過膜。
溫度的影響
膜系統產水電導對進水溫度的變化非常敏感,隨著水溫的增加,水通量幾乎線性地增大,這主要歸功於透過膜的水分子的粘度下降、擴散能力增加。增加水溫會導致脫鹽率降低或透鹽率增加,這主要是因為鹽分透過膜的擴散速率會因溫度的提高而加快所致。膜元件能夠承受高溫的能力增加了其操作范圍,這對清洗操作也很重要,因為可以採用更強烈和更快的清洗程序。
鹽濃度的影響
滲透壓是水中所含鹽分或有機物濃度和種類的函數,鹽濃度增加,滲透壓也增加,因此需要逆轉自然滲透流動方向的進水驅動壓力大小主要取決於進水中的含鹽量。如果壓力保持恆定,含鹽量越高,通量就越低,滲透壓的增加抵消了進水推動力,水通量降低,增加了透過膜的鹽通量(降低了脫鹽率)。
回收率的影響
通過對進水施加壓力當濃溶液和稀溶液間的自然滲透流動方向被逆轉時,實現反滲透過程。如果回收率增加(進水壓力恆定),殘留在原水中的含鹽量更高,自然滲透壓將不斷增加直至與施加的壓力相同,這將抵銷進水壓力的推動作用,減慢或停止反滲透過程,使滲透通量降低或甚至停止。RO
系統最大可能回收率並不一定取決於滲透壓的限制,往往取決於原水中的含鹽量和它們在膜面上要發生沉澱的傾向,最常見的微溶鹽類是碳酸鈣、硫酸鈣和硅,應該採用原水化學處理方法阻止鹽類因膜的濃縮過程引發的結垢。
pH 值的影響
各種反滲透和納濾膜元件適用的pH值范圍相差很大,像這樣的超薄復合反滲透和納濾膜與醋酸纖維素反滲透和納濾膜相比,在更寬廣的 pH
值范圍內更穩定,因而,具有更寬的操作范圍。膜脫鹽率特性取決於pH值,水通量也會受到影響。
10. 過濾器,解析流體的粘度與流速有什麼關系
過濾器一般分為Y型過濾器、精密過濾器和管道過濾器3種。Y型過濾器的纖維時有脫落,不能回給出一個確切的孔答徑,厚度一般在3~20mm,通常有吸附作用,並有較大的承污能力;精密過濾器的纖維一般用熱粘合或膜塗布而成,可以給出額定孔徑,比較薄(<1 mm),吸附能力較小;管道過濾器的主要特點是質地堅硬,不易破碎,有曲折的通道和 非常高的內表面積,有一定的開孔率,能做完整性測試,常用於深級過濾,如Y型過濾器。
流體的過濾機理主要有2種,一種是基於顆粒的大小來分離,例如攔截、篩分和表面捕獲等;另一種是吸附,即顆粒在化學/電荷作用下粘附在濾器上。這就要求各個葯廠根據自身的實際需要來選擇不同的管道過濾器。與流體的特性有關。例如,流體的粘度和化學/離 子成分,流體的粘度越大在同樣的壓力條件下流速越慢,流體與膜之間有較多接觸,過濾效果較好;再如,流體和膜的混合/接觸時間對過濾效果也有較大影響,混合/接觸時間越長則過濾效果越好。此外,需要注意的是,流體的特性隻影響膜對流體的吸附截留效果而不影響顆粒大小的排除。與實際操作條件有關,如顆粒的流速和過濾壓力。要想取得好的過濾效果,一般選擇較低的流速,流速越 低截留效果越好。