㈠ 熱鍍鋅鋅鍋三元合金渣怎麼去除
鋼材熱鍍鋅鋅渣是鋼鐵板帶或結構類工件熱浸鍍鋅時,從鋅鍋的表面或底部撈出的,可以鑄成錠的,鋅含量超過80%的固體廢物,不包括溶劑法熱鍍鋅過程中產生的廢熔劑、助熔劑和集(除)塵裝置收集的灰塵,以及採用化學法電鍍鋅所產生的鋅渣泥,以及其它被列為危廢類的鋅渣,以下簡稱鋅渣。
4 鋅渣的成分
4.1鋅渣的主要成分為鋅和少量鋁、鐵,及熱鍍鋅時加入的銻、稀土等合金元素,具體如表1所示。
表1 鋅渣的主要成分
4.2 混合鋅渣鋅含量不低於80%。
4.3 當鋅渣中含有其它合金元素時,須分開處理。
5 鋅渣的處置
從鋅鍋的表面撈出的頂渣或從鋅鍋底部撈出的底渣分別倒入渣模內鑄成塊狀。不得混入溶劑法熱鍍鋅過程中產生的廢熔劑、助熔劑和集(除)塵裝置收集的粉塵,也不得混入鋅灰、垃圾等雜質,確保其
純度和清潔衛生。鋅渣塊應於室內存放,應注意防雨、防潮,防止化學物質腐蝕。
6 回收利用方法的選擇
6.1 生產鑄造用鋅合金錠
當按照GB/T1175的要求,採用鋅渣生產鋅合金鑄件原料錠時,推薦採用熔析和精煉處理,除去鋅渣中的大部分氧化雜質和鐵鋁類化合物,獲得低雜質含量的鋅合金熔體,經檢測雜質含量符合GB/T1175
以後,鑄錠包裝。
6.2 生產鋅錠
當按照GB/T470的要求,採用鋅渣生產高純度的鋅錠時,推薦採用熔析和精煉處理後的鋅合金熔體,進一步進行真空蒸餾處理,將鋅蒸汽收集冷凝,獲得高純度的液態鋅,經檢測純度符合GB/T470以後,鑄錠包裝。
6.3 生產氧化鋅粉
當按照YS/T 1051的要求,採用鋅渣生產氧化鋅粉時,推薦採用熔析和精煉處理後的鋅合金熔體,進一步進行常態蒸餾處理,鋅蒸汽氧化成氧化鋅粉,經檢測純度符合YS/T1051以後,收集後包裝。
7 回收利用流程
7.1 熔析和精煉處理
鋅渣熔析和精煉處理方法如下:
a)採用熔析精煉爐將鋅渣熔化、升溫到580~600,並通入精煉氣體進行精煉處理。鋅渣內的氧化類和鐵鋁類雜質上浮成為浮渣,從熔體內撈出,進一步處理;鋅渣內的鐵鋅類化合物下沉成為底渣,留在爐子底部,從熔體內分離,進一步處理;中部獲得低雜質含量的鋅合金熔體;
b) 低雜質含量的鋅合金熔體可以進一步進行蒸餾處理,也可鑄錠作為鋅合金鑄件原料;
c) 當作為鋅合金鑄件原料錠時,須向客戶提供標注主要成分的質量保證書;
d) 將精煉浮渣採用球磨、篩分和風選等方法,使含鋅的金屬類物質分離出來,返回鋅渣庫,二次循環回用,雜質作為固廢處理;
f) 精煉底渣收集起來,按照7.4另行處理;熔析和精煉處理的工藝流程如圖1所示。
7.2 真空蒸餾法制備鋅錠
將熔析和精煉處理後低雜質的鋅合金熔體加入真空蒸餾爐,在密封狀態繼續升溫至900~910,並利用真空泵進行減壓蒸餾,使得鋅合金熔體中的鋅以蒸汽的形式分離開來,將鋅蒸汽引入冷凝器,進行冷卻,鋅蒸汽便冷凝成高純度鋅液,鑄成鋅錠,符合GB/T470的規定。蒸餾殘余物主要為鋅鐵、鋁鐵合金,按照7.4另行進行處理。真空蒸餾法制備高純度鋅錠工藝流
㈡ 葫蘆島鋅廠用啥辦法提鋅
真空蒸餾提鋅和富集稀貴金屬法
具體方法屬於專利技術,無法奉告
硬鋅是粗鋅火法精煉時產出的一種副產品,含約90%鋅以及鍺、銦、銀等稀貴金屬。採用真空蒸餾法提鋅和富集鍺銦銀的新工藝及新流程處理硬鋅,在鋅揮發產出粗鋅的同時,使鍺、銦、銀等稀貴金屬富集於蒸餾殘渣中。
所研製的技術個工藝屬國內外首創,專利號:ZL98107600.9,被評為2003年11月國家技術發明二等獎和1999年廣東省科學技術進步一等獎。無「三廢」污染,屬「綠色冶金」新技術。與傳統的隔焰爐-電爐流程相比,該工藝具有流程短、設備簡單、佔地面積小、投資省、能耗低、污染小、金屬回收率高、作業條件好等特點,經濟效益和社會效益顯著。目前已有8台/套用於4個單位,累計產值已超過10億元,新增利稅超過3億元。
主要經濟指標如下:
(1)電耗:~1800度/噸硬鋅;
(2)冶煉時間:16小時/爐;
(3)生產能力:2.5噸硬鋅/爐;
(4)產出的粗鋅含鋅:>99%;
(5)直收率(%):鋅 ~90、鍺 96.14、銦 98.38,銀基本無損失;
(6)富集倍數:鍺、銦、銀均為10倍;
(7)基本建設投資:~60萬元/台;
(8)單位成本:~1200元/噸硬鋅 。
實施條件:火法煉鋅廠用於處理硬鋅,車間面積150平方米,電容量為415千瓦,車間需備有2噸吊車,起吊高度為8米,建設一台裝料量為2.5噸的爐子總投資為60萬元。
效益分析:處理每噸硬鋅的經濟效益約為2000元,國內外大量的火法煉鋅廠需要此工藝及設備。
㈢ 怎麼加工製造鋅錠
【製造鋅錠的方法】鋅錠是指純鋅,當然也會有雜質,但作為鋅錠,至少有90%以上的純度。鋅錠的用途:主要用於壓鑄合金、電池業、印染業、醫葯業、橡膠業、化學工業等,鋅與其它金屬的合金在電鍍、噴塗等行業得到廣泛的應用。 鋅錠的生產方法有:電解法、真空蒸餾法、區域熔煉法、惰性氣氛中精餾法和重精餾法等。
1、電解法陰極沉積鋅含有電解質夾雜物,在熔化時雜質會形成氧化物浮渣。但是電解法所用設備簡單,工藝條件易控制,鋅經電解後的純度可達5N以上,故應用較廣。
2、在惰性氣氛(N2)中,精餾提純所製得鋅的純度可達5N以上,其雜質的含量Cu、A1、Bi、Ni、Fe、Sn、Sb各小於100000wt%。這種力法的生產率低,惰性氣體及其凈化的成本費用高。通過2段真空蒸餾可獲得平均純度達6N的高純鋅錠,其雜質Cu、Pb、Ni、Fe、Sn、Bl、Sb的含量各小0.00001wt%。
3、真空蒸餾法是利用在同一溫度下被蒸餾金屬與所含雜質之間的蒸汽壓力的差異以分離金屬。
4、重精餾法基本原理與粗鋅精餾一樣,基於鋅與各種雜質的沸點不同。不純的鋅經蒸餾後,除Pb稍有蒸發外,基本可以把高沸點的雜質去除掉。鋅蒸氣勢冷凝就可得到純度較高的含Cd鋅錠。
5、Zn與rd的沸點很接近。可用分餾池將Zn與Cd分開。把蒸餾提純的鋅和電解鋅,再經數十次區域熔煉。可分別製得純度為99.99998wt%及99.99993wt%的高純鋅。但區域熔煉法成本較昂貴,只有在原始鋅具有相當向的純度時,才宜採用。
目前鋅錠的純度已提純到6—7N。含鋅大於99.99wt%的純鋅錠稱為4N,一般用作鋅壓鑄合金製品,其性能隨鋅錠純度的提高而提高。平均合鋅量大於99.999wt%的鋅錠稱為5N,其雜質含量水平(×10「wt%)Cu、Mn各為l,A1、MR、Sn、Pb、Bi各為5,Fe、Cr各為10。5N鋅錠主要用於半導體生產。鋅可以通過多種變形加工方法成形。如軋制、拉拔、擠壓。軋制是最常用的加工手段,軋制鋅錠可以用於許多場合。軋制所用原料一般為鋅鑄錠。
㈣ 純凈金屬制備技術的發展歷史
主要看第二個~
金屬材料發展歷史回顧
石器時代(公元五千年前)→青銅器時代(公元一千二百年前)→鐵器時代
三星堆博物館(Sanxingi Museum)位於全國重點文物保護單位三星堆遺址東北角,地處歷史文化名城四川省廣漢市城西鴨子河畔,南距成都38公里,北距德陽26公里,是我國一座大型現代化的專題性遺址博物館。博物館於1992年8月奠基,1997年10月正式開放。
發掘歷程
1.初始時期(1929年-1934年)
1929年在三星堆遺址真武村燕家院子發現玉石器坑,出土玉石器三、四百件。
1931年英國神父董宜篤四處奔走,使1929年出土的玉石器大部分歸華西大學博物館。
1932年華西大學博物館館長葛維漢提出在廣漢進行考古發掘的構想並獲四川省政府教育廳的批准。
1934年3月1日葛維漢、林名均抵達廣漢。
3月葛維漢、林名均等在真武村燕家院子附近清理玉石器坑, 並在燕家院子東、西兩側開探溝試掘。
2.初步調查與發掘(1951年-1963年)
1951年四川省博物館王家佑、江甸潮等調查三星堆、月亮灣,首次發現大 片古遺址。
1958年四川大學歷史系考古教研組再次調查三星堆遺址。
1963年四川省博物館和四川大學歷史系聯合發掘三星堆遺址。由著名考古學家、四川省博物館館長、四川大學歷史系教授馮漢驥主持。
3.兩坑的發掘及古城再現(1980年-2005年)
1980年~1981年四川省文物管理委員會與廣漢縣聯合首次發掘三星堆遺址,揭露出大面積的房屋基址。
1982年 11月~83年1月第二次發掘 三星堆遺址,首次在三星堆遺址發現陶窯。
1984年 3月~12月第三次發掘三星堆遺址,在西泉坎發掘出龍山時代至西周早期的文化堆積,確定了三星堆遺址的年代上、下限。
1984年12月~1985年10月 第四次發掘三星堆遺址,發現三星堆土埂為人工夯築,首次提出三星堆遺址是蜀國都城的看法。
1986年3月~5月四川省文物管理委員會、四川省文物考古研究所、四川大學歷史系與廣漢縣聯合,第五次發掘三星堆遺址,發掘面積1200平方公尺,發現大量灰坑和房屋遺跡『將三星堆遺址的代上限推至距今 5,000年前。
1986年7月18日當地磚廠在第二發掘區取土時發現祭祀坑,挖出玉石器。第六次發掘三星堆遺址。
1986年7月18日四川省文物管理委員會、四川省文物考古研究所與廣漢縣聯合發掘祭祀坑,編號為一號祭祀坑。出土銅、金、玉、琥珀、石、 陶等器物共420件,象牙13根。
8月14日距一號祭祀坑東南約30公尺處發現二號祭祀坑。
8月20日發掘清理二號祭祀坑,出土銅、金、玉、石等珍貴文物1302件(包括殘件和殘片中可識別出的個體),象牙67根,海貝約4600枚。
1988年10月第七次發掘三星堆遺址,對三星堆土埂進行試掘,確定土 埂為內城牆的南牆。~1989年1月
1990年1月~5月 第八次聯合發掘三星堆遺址,在東城牆發現土坯,首次了解三星堆古城城牆的結構、夯築方法和年代。
3月舉行三星堆遺址祭祀坑出土銅樹修復方案論證會,並對銅樹進行預合。
1991年12月四川省文物管理委員會、四川省文物考古研究所第九次聯合發
~1992年5月發掘三星堆遺址,將西城牆進行試掘並得到確認。
1994年11月四川省文物管理委員會、四川省文物考古研究所第十次發掘三星堆遺址,調查發現了三星堆遺址南城牆,並進行了試掘。
1996年10月中日合作對三星堆遺址進行環境考古工作,主要項目有磁場
~11月 雷達探測、紅外遙感探測與攝影、衛星圖像解析、微地形調查、炭素年代測定、花粉分析、硅質體分析、硅藻分析等。
1997年11月四川省文物管理委員會、四川省文物考古研究所第十一次發掘三星堆遺址,對三星堆遺址仁勝磚廠墓地進行發掘。共發現墓葬28座,發現了大量玉石器,其中具有良渚文化風格的"玉錐形器"的發現,引起研究者對三星堆玉石器的文化淵源關系進行重新思考。
1999年1月~四川省文物管理委員會、四川省文物考古研究所第十二次發掘三星堆遺址,對三星堆遺址月亮灣城牆進行發掘,在城牆下發現大量龍山至商代早期的文化堆積,同時城牆又被殷墟時期的堆積疊壓疊壓,從而可以確定月亮灣內城牆的年代為殷墟早期。
2000年12月~2001年7月四川省文物管理委員會、四川省文物考古研究所 第十三次發掘三星堆遺址。在燕家院子發現大量三星堆第四期的文化堆積,使人們對三星堆遺址第四期的文化面貌和年代下限有較為清楚的認識。
2005年3月四川省文物管理委員會、四川省文物考古研究院第十四次發掘三星遺址。在青關山發現大型夯土建築台基。
後續整理工作(2005年至今)
目前,三星堆遺址考古工作站正在全力以赴地整理三星堆遺址綜合報告,
此項工作預計2008年初結束。
問題:能把"賤金屬"變成"貴金屬"嗎?
金與銀出現,色澤美麗和稀少而稱為"貴金屬",其它金屬則相應地被稱為"賤金屬"
煉金術,希望用某種工藝把賤金屬轉變為貴金屬,客觀上起到了促進材料科學發展的作用,在隨後一千多年的時間里,使人類積累了一定的材料制備方面的經驗,這對十九世紀以後材料科學的形成與發展奠定了基礎。
幾個著名的"煉金術士"摩耳、玻意耳、牛頓。
1711年英國出現了高六米,邊長二點五米見方的高爐,日產鐵六噸。1856年英國人亨利•貝賽爾首先用鐵煉成了鋼 。
煉金術偏重於實際操作,在這方面的技術也的確造福於後代子孫,現代化學中使用的很多設備和技術是由此發展的,制葯技術中的一些精煉技術、凈水技術、合成橡膠和一些現代材料的製造都與其密切相關。
十九世紀末到二十世紀中葉
低合金高強度鋼→超高強度鋼→合金工具鋼→高速鋼
不銹鋼→耐熱鋼→耐磨鋼→電工用鋼
鋁合金→銅合金→鈦合金→鎢合金→鉬合金
金屬材料依然在材料家族中佔有統治地位
主要優勢:
1、金屬材料的力學性能全面,可靠性高,使用安全;
2、具有良好的溫度使用范圍;良好的工藝性能;
3、儲量豐富,適合大規模應用
鋼鐵材料
自工業革命以來,鋼鐵一直是人類使用的最重要的材料,是國家工業化的基礎,鋼鐵的生產能力是一個國家綜合實力的重要標志。目前世界鋼鐵產量仍然在逐年增長。
中國鋼鐵工業協會秘書長戚向東說:在2005年鋼鐵行業還是要把嚴格控制固定資產的投資作為一項首要的任務,同時進一步提高鋼鐵行業運行的質量和效益。
鋼鐵工業發展的趨勢
產品結構在變化:板材、管材、帶材等高附加值產品的比重大幅增長
產業集中度進一步提高:產鋼500萬噸以上的企業由13家增加到15家,佔全國鋼產量的45%
主要應用領域:作為工業中最重要的材料,在未來很長的一段時期內,鋼鐵材料的主導地位仍將難以動搖。
電力系統:工業鍋爐、熱交換管道、大型轉子和葉輪等
汽車工業:主要結構件、車床與機械工業
鐵路與橋梁、船舶與海上鑽井平台、兵器工業:坦克、大炮、槍械
石油開采機械及輸油管道、化工壓力容器、建築鋼筋和構架、
有色金屬材料
有色金屬材料是金屬材料中的重要一員,雖然其產量只是鋼鐵材料的6%,然而它卻以其獨有的性能有時佔有不可替代的作用。
鋁合金:最重要的輕金屬合金,具有低密度(2.7g/cm3)、抗大氣腐蝕、良好的導電性、高比強度和良好的加工性。是航空工業及多種工業領域中的重要結構材料。
鈦合金:密度小(4.5g/cm3)、強度高、耐高溫和腐蝕,在航空航天及其它工業領域有重要用途。
鎂合金:密度僅有1.7g/cm3,比強度高,減振能力強,在航空航天領域有重要作用。
鈹合金:密度1.8g/cm3,比剛度很高,尺寸穩定,慣性低,用於慣性導航和航天低重量剛性件,比熱大,可用於散熱片和飛行器頭部;中子反射截面高,用於原子能反應堆反射層等。
銅合金:用於機械、儀表、電機、軸承、汽車等工業。
鋅合金:用於電池鋅板,照相和膠印製版,模具和儀表零件。
鎳合金:工作溫度可達1050℃,用於航空、火箭發動機和反應堆中的高溫部件。
錳合金:減振性好,用於潛艇螺旋漿、鑽桿等。
鉛合金、錫合金:用於保險絲、熔斷器、焊料等
鎢合金:熔點高3407℃、密度大(19.3g/cm3),可用於大威力穿甲彈等。
鉬合金:熔點2610℃、在1100-1650℃下有較高的比強度。
鈮合金:熔點2477℃,用於飛機和宇宙飛船推進系統中的高溫材料。
金、銀、鉑、鈀、銠、銥等:具有良好的化學惰性、艷麗的色澤、長期不褪色,可做裝飾品、電子線路引線、精密電阻、熱電偶等。
金屬學的發展歷史
金屬材料在人類社會中的使用歷史雖然很長,然而,在相當長的一段時間內關於金屬材料方面的相關技術都只是停留在手工藝階段,而對掌握相關技術的人也只能稱為工匠,其原因在於其所掌握的只是經驗而沒有對金屬材料本質的理解。
1861年,英國人肖比首先使用光學顯微鏡研究了金屬的顯微結構,對金屬的組織結構有了初步的了解,從而開創了一門新的學科--金相學。
1905年X射線用於金屬研究,發現了金屬原子排列的規律性。
金屬學誕生
人類對金屬內部微觀結構的認識又深入了一步,發現了許多科學規律,解釋了大量過去不理解的現象。
電子顯微鏡的出現使人們能夠更加細致地了解金屬內部的結構,對其微觀世界的認識又前進了一大步。
近20年來,各種電子顯微分析設備不斷被研製成功,人們已經可以看到原子在材料中的排列,這一切都使金屬材料的研究進入了一個嶄新的階段。
不斷開拓新的功能:高溫合金、鈦合金、金屬間化合物、阻尼合金、超導合金、形狀記憶合金、儲氫合金、納米金屬材料、非晶態金屬材料。
非晶態金屬
1960年美國加洲大學Duwez小組用快冷技術首次獲得了非晶態合金(Amorphous alloys) Au70Si30,發現非晶態合金具有很多常規合金不可比擬的優越性。
強度最高、韌性最好、最耐腐蝕、最易磁化
非晶的結構:晶體和非晶體都是真實的固體。晶體是長程有序,在晶體中原子的平衡位置為一個平移的周期陣列。非晶體是長程無序,短程有序,原子排列無周期性,又稱金屬玻璃。
玻璃化轉變動力學性質和冷卻速度有關,冷卻速度提高,玻璃轉變溫度降低。
要使原子凍結成保持非晶固體的位移,必須滿足原子弛豫時間(t)大於實驗冷卻時間。
相對於處於能量最低的熱力學平衡態的晶體相來說,非晶態固體是處於亞穩態。
金屬玻璃一旦形成,就能保持實際上無限長的時間。
結晶的基本過程:形核、長大
C曲線中開始結晶時間的長短決定了生成物的狀態
兩個方向:降低臨界冷卻速度、發展快速冷卻技術。
非晶的結構特點:
(1)非晶態是一種亞穩態,是在特定條件下形成的,因此在一定條件下將向晶態轉變,在向晶態轉變的過程中形核率高,因此可以得到十分細小的晶體,在許多條件下還可以 形成一些過度結構。
(2)非晶態合金中沒有位錯,沒有相界和晶界,沒有第二相,因此可以說是無晶體缺陷的固體。
(3)原則上可以得到任意成分的確均質合金相,因此大大開闊了合金材料的范圍,並且可以獲得晶態合金所不能得到的優越性能。
非晶合金的性能:
(1)特殊的物理性能:優異的磁學性能是許多非晶態合金的突出特點,具有軟磁性能的合金很容易磁化,一些非晶態永磁合金經過部分晶化後,性能還有大幅度的提高。非晶合金還有較高的電阻率,密度比晶體合金低1-2%,原子的擴散系數大一個數量級,熱膨脹系數為晶體的一半左右
(2)優良的耐腐蝕性能:由於其結構更加均勻,使腐蝕過程中不易形成微電池,因而具有更強的抗腐蝕能力。例如,在FeCl3溶液中,鋼完全不耐腐蝕,而Fe-Cr非晶合金基本不腐蝕,在H2SO4中,Fe-Cr非晶的腐蝕率是不銹鋼的千分之一。其中Cr的主要作用是形成富Cr的鈍化膜。
(3)優異的力學性能:非晶合金中原子之間的鍵合比一般的晶體中的鍵強,而且無位錯等晶體缺陷,因此具有極高的強度。例如,4340超強度鋼的斷裂強度為1.6GPa,而非晶Fe80B20合金為3.63GPa,Fe60Cr6Mo6B28則達到4.5GPa。在具有高強度的同時,非晶態合金還有良好的韌性和良好的延展性,較高的硬度和耐磨性。
非晶的應用
新一代變壓器鐵芯,不僅易磁化、矯頑力低,且有很高的電阻,可以大為降低渦流,如Fe81B13.5Si3.5C2和Fe82B10Si8等鐵基軟磁材料的磁損是常用硅鋼片的1/3-1/5,能耗可以因此降低2/3,此外還可做磁記錄裝置、記憶元件材料等。
由於製造大塊非晶困難,因此其應用也受到限制,但可作為復合材料的增強體,高強度、抗海水腐蝕的銅基非晶合金可作為製造潛水艇的材料,某些鐵基非晶合金可作為快中子反應堆的化學過濾器。
高純金屬是現代許多高、新技術的綜合產物,雖然20 世紀30 年代便已出現「高純物質」這一名稱,但把高純金屬的研究和生產提高到重要日程,是在二次世界大戰後,首先是原子能研究需要一系列高純金屬,而後隨著半導體技術、宇航、無線電電子學等的發展,對金屬純度要求越來越高,大大促進了高純金屬生產的發展。
純度對金屬有著三方面的意義。第一,金屬的一些性質和純度關系密切。純鐵質軟,含雜質的鑄鐵才是堅硬的。另一方面,雜質又是非常有害的,大多數金屬因含雜質而發脆,對於半導體,極微量的雜質就會引起材料性能非常明顯的變化。鍺、硅甲含有微量的m 、V 族元素、重金屬、鹼金屬等有害雜質,可使半導體器件的電性能受到嚴重影響。第二,純度研究有助闡明金屬材料的結構敏感性、雜質對缺陷的影響等因素,並由此為開發預先給定材料性質的新材料設計創造條件。第三,隨著金屬純度的不斷提高,將進一步揭示出金屬的潛在性能,如普通金屬被是所有金屬中最脆的金屬。而在高純時被便出現低溫塑性,超高純時更具有高溫超塑性。超高純金屬的潛在性能的發現,有可能開闊新的應用領域,在材料學方面打開新的突破口,為高技術的延伸鋪平道路。
金屬的純度是相對於雜質而言的,廣義上雜質包括化學雜質(元素)和物理雜質(晶體缺陷)。但是,只有當金屬純度極高時,物理雜質的概念才是有意義的,因此生產上一般仍以化學雜質的含量作為評價金屬純度的標准,即以主金屬減去雜質總含量的百分數表示,常用N ( nine的第一字母)代表。如99.9999 %寫為6N , 99.99999 %寫為7N 。此外,半導體材料還用載流子濃度和低溫遷移率表示純度。金屬用剩餘電阻率RRR和純度級R表示純度。國際上關於純度的定義尚無統一標准。一般講,理論的純金屬應是純凈完全不含雜質的,並有恆定的熔點和晶體結構。但技術上任何金屬都達不到不含雜質的絕對純度,故純金屬只有相對含義,它只是表明目前技術上能達到的標准。隨著提純水平的提高,金屬的純度在不斷提高。例如,過去高純金屬的雜質為10-6級(百萬分之幾),而超純半導體材料的雜質達10一9 級(十億分之幾),並逐步發展到10 一12 級(一萬億分之幾)。同時各個金屬的提純難度不盡相同,如半導體材料中稱9N 以上為高純,而難熔金屬鎢等達6N 已屬超高純。
高純金屬製取通常分兩個步驟進行,即純化(初步提純),和超純化(最終提純)。生產法大致分為化學提純和物理提姓兩類。為獲高純金屬,有效除去難以分離的雜質,往往需要將化學提純和物理提純配合使用,即在物理提純的同時,還進行化學提純,如硅在無坩堝區熔融時可用氫作保護氣,如果在氫氣中加入少量水蒸氣,則水與硅中的硼起化學反應,可除去物理提純不能除去的硼。又如採用真空燒結法提純高熔點金屬鉭、鈮等時,為了脫碳,有時需要配人比化學計量稍過量的氧,或為脫氧配人一定數量的碳,這種方法又稱為化學物理提純。
一、化學提純
化學提純是製取高純金屬的基礎。金屬中的雜質主要靠化學方法清除,除直接用化學方法獲得高純金屬外,常常是把被提純金屬先製成中間化合物(氧化物、鹵化物等), 通過對中間化合物的蒸餾、精餾、吸附、絡合、結晶、歧化、氧化、還原等方法將化合物提純到很高純度,然後再還原成金屬,如鍺、硅選擇四氯化鍺、三氧氫硅、硅烷( SiH4)作為中間化合物,經提純後再還原成鍺和硅。化學提純方法很多,常用的列於表一
表一:常用化學提純方法
二、物理提純
物理提純主要利用蒸發、凝固、結晶、擴散、電遷移等物理過程除去雜質。物理提純方法主要有真空蒸餾、真空脫氣、區域熔煉、單晶法(參見半導體材料章)、電磁場提純等,此外還有空間無重力熔煉提純方法。
物理提純時,真空條件非常重要。高純金屬精煉提純一般都要在高真空和超高真空(10一6 一10-8Pa )中進行,真空對冶金過程的重要作用主要是:① 為有氣態生成物的冶金反應創造有利的化學熱力學和動力學條件,從而使在常壓下難以從主金屬中分離出雜質的冶金過程在真空條件下得以實現;② 降低氣體雜質及易揮發性雜質在金屬中的溶解度,相應降低其在主金屬中的含量;③ 降低金屬或雜質揮發所需溫度,提高金屬與雜質問的分離系數;④ 減輕或避免金屬或其他反應劑與空氣的作用,避免氣相雜質對金屬或合金的。污染。因此許多提純方法,如真空熔煉(真空感應熔煉、真空電弧熔煉、真空電子束熔煉)、真空蒸餾、真空脫氣等必須在真空條件下進行。
1 .真空蒸餾
真空蒸餾是在真空條件下,利用主金屬和雜質從同一溫度下蒸氣壓和蒸發速度的不同,控制適當的溫度,使某種物質選擇性地揮發和選擇性地冷凝來使金屬純化的方法,這種方法以前主要用來提純某些低沸點的金屬(或化合物),如鋅、鈣、鎂、鎵、硅、鋰、硒、碲等,隨著真空和超高真空技術的發展,特別是冶金高溫高真空技術的發展,真空蒸餾也用於稀有金屬和熔點較高的金屬如鈹、鉻、釔、釩、鐵、鎳、鈷等的提純。
蒸餾的主要過程是蒸發和冷凝,在一定溫度下,物質都有一定的飽和蒸氣壓,當氣壓中物質分壓低於它在該溫度下的飽和蒸,氣壓的蒸氣壓時,該物質便不斷蒸發。蒸發的條件是不斷供給被蒸發物質熱量,並排出產生的氣體;冷凝是蒸發的逆過程,氣態物質的飽和蒸氣壓隨溫度下降而降低,當氣態組分的分壓大於它在冷凝溫度下的飽和蒸氣壓時,這種物質便冷凝成液相(或固相),為使冷凝過程進行到底,必須及時排出冷凝放出的熱量。影響真空蒸餾提純效果的主要因素是:① 各組分的蒸氣分壓,分壓差越大,分離效果越好;② 蒸發和冷凝的溫度和動力學條件,一般溫度降低可增大金屬與雜質蒸氣壓的差距,提高分離效果;③ 待提純金屬的成分,原金屬中雜質含量越低,分離效果越好;④ 金屬和蒸發和冷凝材料間的作用,要求蒸發冷凝材料本身有最低的飽和蒸氣壓;⑤ 金屬殘余氣體的相互作用;⑥ 蒸餾裝置的結構;⑦ 真空蒸餾有增鍋式和弟增鍋式兩種,無增鍋蒸餾一般通過電磁場作用將金屬熔體懸浮起來(見圖一 ) ,有關蒸餾工藝請參見上述元素的精製過程。
圖一: 無坩堝蒸餾裝置
1—紿料機構;2—待提純金屬;3—擋板;4—陰極;5—冷凝器;
6—遮熱板;7—金屬收集器;8—真空;9—抽真空裝置
2 .真空脫氣
真空脫氣是指在真空條件下脫除金屬中氣體雜質的過程。實際上是降低氣體雜質在金屬中的溶解度。根據西韋茨定律,恆溫下雙原子氣體在金屬中的溶解度和氣體分壓的平方根成正比。因此提高系統的真空度,便相當於降低氣體的分壓,亦即能降低氣體在金屬中的溶解度,而超過溶解度的部分氣體雜質便會從金屬中逸出而脫除。以擔粉真空熱處理為例,在高真空(2.5 一6μPa)條件下,擔的水分在100 一200℃ 急劇揮發,600 - 700℃ 氫化物分解逸出,鹼金屬及其化合物在1100 一1600℃ 溫度下揮發,大部分鐵、鎳、鉻等以低熔點氧化物形態揮發,2300℃ 時氮揮發逸出,對比氫、氮對金屬親和勢大的氧,則以加碳脫氧(「C] +「O] = CO↑)和以上雜質金屬低價氧化物MeON 的方式除去。真空脫氣廣泛用於高熔點金屬鎢、鉬、釩、鈮、鉭、錸等的純化。
3 .區域熔煉
區域熔煉是一種深度提純金屬的方法,其實質是通過局部加熱狹長料錠形成一個狹窄的熔融區,並移動加熱使此狹窄熔融區按一定方向沿料錠緩慢移動,利用雜質在固相與液相同平衡濃度差異,在反復熔化和凝固的過程中,雜質便偏析到固相或液相中而得以除去或重新分布;熔區一般採用電阻加熱,感應加熱或電子束加熱,下圖為鍺區域熔煉示意圖。
圖二:鍺的區域熔煉提純示意圖
區域熔煉廣泛用於半導體材料煌高熔點金屬鎢、鉬、鉭、鈮的提純,更用於高純鋁、鎵、銻、銅、鐵、銀等金屬的提純。對含雜質約1x10-3 %的鍺,在區域提純6 次後,高純鍺部分的雜質濃度可降到1x 10一8 %。鎢單晶經5 次區熔後可由40 提高到2000。
4 .電遷移提純
電遷移是指金屬和雜質離於在電場的作用下往一定方向遷移或擴散速度的差別來達到分離雜質的目的。是新近發展起來的用於深度提純金屬的方法,其特點是分離間隙雜質(特別是氧、氮、碳等)的效果好,但目前僅應用於小量金屬的提純。將其和其他提純方法結合使用,可獲超高純度的金屬。
將棒狀樣品通過流電,母體金屬和雜質離子便向一定方向移動,這時離子的漂移速度為:V = UF
式中,V 為離子漂移速度;U 為離子遷移率;F 為作用於離子的外力,它由電場作用力。和導電電子散射作用於離子的力組成。這些作用力和離子有效電荷數有關。依母體離子和雜質離子的電荷數不同租擴散、漂移速度不同而達到分離目的。
5 .電磁場提純
在電磁場作用下深度提純高熔點金屬的技術越來越多地被採用。電磁場不限於對熔融金屬的攪拌作用,更主要的是電磁場下可使熔融金屬在結晶過程中獲得結構缺陷的均勻分布,並細化晶粒結構。在半導體材料拉制單晶時,在定向結晶時熔體中存在溫度波動,這種溫度波動會導致雜質的層狀分布,而一個很小的恆定磁場就足以消除這種溫度波動。在多相系統結晶時,利用電磁場可使第二相定向析出,生成類似磁性復合材料的各向異性的組織結構,電磁場還用於懸浮熔煉,這時電磁場起能源支撐作用和攪拌作用,利用雜質的蒸發和漂走第二相(氧化物、碳化物等)來純化金屬。由於不存在和容器接觸對提純金屬造成的污染問題,被普遍用於幾乎所有高熔點金屬的提純,如鎢、鉬、鉭、鈮、釩、錸、鋨、釕、鋯等。
6 .提純方法的綜合應用
各個提純方法都是利用金屬的某個物理性質或化學性質和雜質元素間的差異而進行分離達到提純目的的,如真空蒸餾是利用金屬和雜質的飽和蒸氣壓和揮發速度的差異。區域熔煉是利用雜質在固相和液相間的溶解度差異而進行提純分離的,因而各個方法都有一定的長處(對某些雜質分離效果好)和短處(對另一些雜質分離效果差)。即使是同一個提純方法,也因金屬性質的不同,提純效果差別很大,如區域熔煉對高熔點金屬的提純效果好,但對某些稀土金屬的提純效果則不理想。欲獲深度提純金屬的效果,一般需要綜合應用多種提純手段。在這方面,各個方法的合理結合應用和先後順序使用十分重要,通常是將電子束熔煉或蒸餾和區域熔煉或電遷移法相結合,即先進行電子束熔煉或蒸餾提純,再以區域熔煉或電遷移提純作為終極提純手段,以被為例,為獲超高純鈹,最好先多次蒸餾提純,再真空熔煉,最後進行區域熔煉或電遷移提純,經這樣提純後所得鈹單晶純度達99 .999 % ,殘余電阻率R>1 000 。在製取超純鍺時,一般先用化學法除去磷、砷、鋁、硅、硼等雜質,再用區熔法提純得到電子級純鍺;最後多次拉晶和切割才能達到13N 的純度要求。下表為各種方法結合使用提純金屬錸的效果。
表二:各種提純方法提純金屬錸的效果
7 .宇宙空間條件下提純金屬
宇宙空間的開發為提純金屑製造了新的機會。宇宙空間的超高真空(約10-1OPa)、超低溫和基本上的無重力,為金屬提純提供了優越條件。在這種條件下,液態金屬中將不會有對流的問題,結晶時雜質的分布將只具有純擴散性質,熔化金屬毋需坩堝,超高真空尤其有利於雜質的揮發和脫氣。這些對於採用熔煉、蒸發、區域熔煉等方法提純化學活性大的金屬和半導體材料來說更是非常理想的條件。以提純鍺為例,在地球上鍺垂熔時雜質稼的分離系數為0.1/0.15,而在宇宙空間時則達0.23/0.17 。在無重力條件拉制的晶體的完整性較在重力條件下的完整性好很多。以銻化銦為例,其位錯密度比只是在重力條件下的位錯密度的1/6 。由於宇宙中液態金屬表面張力系數值很大,故在宇宙間用無坩堝區域熔煉法必定能制備出極高純度和完整性的單晶來。此外,超低「宇宙」溫度也具有良好的應用前景。
此文附圖,參考:http://www.chinesemine.cn/zy/2008/0706/article_202.html
㈤ 請說說「鋅的二次冶金」的定義和其有關工藝
你看好了
鋅的二次冶金
摘要 :本文介紹世界和我國的二次鋅資源的現狀和利用情況,以及二次鋅資源的來源方向。主要介紹全球先進的二次鋅的提取冶煉新技術,整合以便我們能更好的創新,為研究出一套更能完全、安全,無煙塵、無毒、環保的冶煉二次鋅資源的技術奠定基礎。
關鍵字:二次鋅資源、存在情況、再生、技術方法
一 世界和我國的鋅二次資源情況
鋅是目前世界上循環利用較好的金屬之一,二次鋅資源已成為鋅生產的重要原料,全球30%鋅來源於二次鋅資源,再生鋅年產量高達290萬噸,西方發達國家不僅有一系列專業二次鋅冶煉廠,而且主要鋅冶煉廠也從事二次鋅的回收處理,尤其是近幾年由於鋅精礦供應日趨緊張, 國外等3著名鋅公司均紛紛改變原料結構,採用電弧爐煙塵等二次鋅資源作為鋅冶煉的主要原料。鋅是我國傳統的優勢資源,其使用領域十分廣泛。鋅能和多種有色金屬製成合金用於機械製造業、製造各種精密鑄件以及鍍鋅作業。據美國鋅貿易公司估計,目前全世界每年消耗金屬鋅及鋅化合物的金屬約1000萬噸。70%是從礦石中提取的,;另外有30%是利用再生原料生產的。美國礦務局估計,2000年美國再生鋅占鋅消費總量的40%。美國每年生產再生鋅12萬噸以上。再生氧化鋅3.5萬噸。國際鋅協會估計。世界再生鋅產量的增長速度3倍於原生鋅。到2005年再生鋅佔世界鋅消耗量的40%。
隨著我國地質勘探工作的萎縮、資源開采強度的不斷提高及冶煉能力的過快增長,我國鋅資源的優勢格局已經發生了改變。我國的鋅凈出口量,包括合金中含的鋅,自2000 年以來一直呈逐漸減少的趨勢,中國鋅供應由過剩轉為短缺。 在金屬鋅的使用過程中,會產生許多含鋅的二次資源,這些資源是回收鋅的重要原料。在我國,一方面,鋅精礦原料供應日趨緊張,已成為影響鋅冶煉廠發展的關鍵因素;另一方面,國內二次鋅資源利用剛起步,再生年產量不到10萬噸,不到精鋅產量的5%。尚未形成規模,與西方工業國家相距甚遠, 為保證我國鋅資源產品對國民經濟的有效供給,推進鋅工業的可持續發展,緩解資源的供需矛盾,有必要重視鋅二次資源的回收治理工作。
盡管鋅作為一種主要是增強其他材料的使用性能的功能性材料,人們主要是依靠開發礦產資源來獲得金屬鋅。按目前普遍實行的統計口徑過去很長一段時期里,礦產鋅的產量在世界鋅總產量中所佔的比例都在90%以上。近年來,隨著循環經濟理念的逐步建立,人們日益重視二次資源的回收利用循環復用。
二 二次鋅資源的來源構成
二次鋅資源包括1 熱鍍鋅行業,熱鍍鋅廠長生的鋅灰,鋅浮渣和鍋底渣
2 化工及化學品生產,鋼鐵廠煉鋼過程產生的煙日鋅和鋅合金零件,例化工廠及冶煉廠的工藝副廠品以及其他含鋅廢料。
3 鋅加工行業和回收行業。廢黃銅料、壓鑄廢料、煙塵、鍍鋅廢渣及廢邊角鋅片,鍍鋅鋼廢料、熱鍍鋅渣及廢舊鋅錳電池,生產中產生的廢料主要來源於鍍鋅鋼生產過程和汽車、建築物及其它製品的加工過程,連續鍍鋅鋼生產線產出的廢渣量一般約為產品產量的0.5%-2%;汽車、洗衣機、冰箱等設備的生產與裝備過程廢料產生量較大,其中汽車行業廢料產生率約為28%-30%;回收的廢料主要為報廢的汽車、家用電器、空調、高速公路路障及路燈柱等含鋅部件。全球范圍內,鍍鋅廢鋼的收集量正在逐年上升,1995年全球鍍鋅鋼廢料回收量為6500萬噸。據國際鋅協會的數據,歐洲再生鋅的基本原料來源是:黃銅42%;鍍鋅渣27%;壓鑄廠品廢料16%;鋼鐵工業港絪塵6%;鋅材料加工半成品廢料6%;化學工業鋅廢料2%;其他1%。二次鋅資源的成分波動很大,幾種主要物料的組成(質量分數)如下:
鋅輝(熱鍍鋅過程中的氧化物):Zn 60%-85%,Pb 0.3%-2.0%.AL 0%-0.3%,Fe 0.2%-1.5%,Cl 2%-12%;
鍋渣(熱鍍鋅過程形成的合金,類似於硬鋅):Zn 96%,Fe 4%;
電弧爐煉鋼煙塵(其他成分取決於廢鋼原料):Zn 15%-25%,二次鋅源的來源及組成差異很大,回收處理過程中要針對不同原料採取不同的工藝,以達到最大限度回收復用目的。
三 鋅的二次冶金生產技術,
二次鋅資源的冶金技術包括:火法工藝,濕法工藝活法工藝中魏式爐揮發生產工業氧化鋅作為濕法煉鋅的原料;電爐處理生產金屬鋅粉;橫罐或豎罐蒸餾牛產粗鋅;或是作為燒結配料用熔煉法處理,還有真空冶金技術,物理法等等。
鋼鐵廠高鋅含鐵塵泥處理工藝其中物理法處理工藝主要有兩種:磁性分離和機械分離。磁性分離是利用鋅富集在磁性較弱粒子中的特性,採用磁選方法富集鋅元素。該方法用於高爐粉塵時,要增加浮選除碳工藝,以提高磁性分離的效率。機械分離是利用鋅一般富集在較小粒度中的特性,採用離心的方式富集鋅元素。機械分離按分離狀態可分為濕式分離和乾式分離。磁性分離工藝較簡單、易行,其主要缺點是鋅的富集率較低;機械分離除工藝簡單易行外,對處理後的粗粉可直接用於煉鐵,但該法的操作費用較高,富鋅產品的鋅含量過低,價值較小。一般,物理法只作為濕法或火法工藝的預處理。
濕法處理鋅廢料的冶金技術近年來發展較快,主要是溶劑萃取劑技術的發展最近為鋅回收行業所認識,預計未來十年其應用將會日益增多。具有代表性的工藝是西班牙Tecnicas Rejunidas公司開發的Zincex Process法和MZP,該法的特點是廢鋅料經硫酸或鹽酸溶解後,利用有機萃取劑的高選擇性,將鋅離子從溶液中萃取出來,並實現與其他雜質分離,達到提純的目的。該公司建有8000噸每年的工廠,處理再生鋅原料,產品可以是電鋅、超純硫酸鋅或超純氧化鋅。萃取劑是D2EHPA的煤油溶液。 濕法處理工藝濕法工藝一般用於中鋅和高鋅塵泥的處理。氧化鋅是一種兩性氧化物,不溶於水或乙醇,但可溶於酸、氫氧化鈉或氯化銨等溶液中。濕法回收技術就是利用氧化鋅的這種性質,採用不同的浸取液,將鋅從混合物中分離出來,工藝流程如圖1所示
根據選擇浸出液的不同,濕法處理工藝又可分為以下幾種:酸浸,浸出反應如下:Zn+H2O=Zn2++H2O; 鹼浸、 培燒、鹼浸。
濕法工藝有以下特點:1)當塵泥中鐵酸鋅含量較高時,鋅的浸出率低,同時浸渣中鋅含量較高,不能作為原料在鋼鐵廠循環利用,也滿足不了環保提出的堆放要求;
2)設備腐蝕嚴重,處理過程中引入的硫、氯等易造成新的污染;
3)與鋼廠現有技術不配套。
火法處理冶金含鋅塵泥的主要工藝有直接還原法:回轉窯法。回轉窯工回轉窯工藝( 簡稱SPM法) 是住友重工業公司鋼鐵廠從廢料中分離鋅並回收含鐵料而發展起來的。其工藝流程見圖下。把鋼廠內各種來源的廢料放入泥漿池內進行混合, 然後過濾, 在旋轉乾燥器內乾燥。混合料與細的無煙煤一起裝入還原窯, 通過燃燒靠近回轉窯出料端沿軸向布置的燃燒器內的焦爐煤氣和空氣來加熱。窯內的爐料足以加熱到部分地軟化和熔化並在窯襯上富集形成結瘤掛圈, 回轉窯高溫帶的成球棒把這些料從窯壁上刮下, 並沿窯壁滾動形成小球或顆粒。廢料中鋅的氧化物被還原成金屬鋅, 在窯溫下蒸發並與排出的其煙氣一起離開回轉窯。當煙氣在排放系統中冷卻時, 一部分鋅氧化成細小的固體顆粒並被收集在布袋式除塵器內。直接還原的鐵產品排入回轉冷卻器內, 用大量的水進行快速冷卻。然後用篩孔為7 mm 的篩子篩分, 粒度大於7 mm 的直接還原鐵送至高爐, 剩下的全部送往燒結廠。
工藝特點: 不需造球, 還原出的產品30%( 粒度大於7 mm) 可直接作為高爐原料使用, 剩下約70%的粉末須重新燒結。還原爐內原料填充率僅為2%, 金屬化率為75%, 因此產品質量差, 生產效率較低。另外,該工藝設備龐大、投資大、成本較高。
轉底爐法。 轉底爐法是將高鋅含鐵塵泥、碳粉和粘結劑混合造球。生球經烘乾後置於轉底爐內,當轉底爐轉動時生球被加熱,至1100 °C左右時氧化鋅被還原,還原出的鋅被蒸發並隨煙氣一起排出,經冷卻系統時被氧化成細小的固體顆粒而沉積在除塵器內。轉底爐處理含鋅塵泥有許多優點,但也有不足之處,例如:粉塵中脈石成分(大於30%)在直接還原處理後仍保留在金屬化球團中;如塵泥含鋅高,直接還原處理後的金屬球團中仍含有較高的鋅(大於0.3%)和硫(大於0.3%),這些問題都將影響金屬化球團的進一步有效利用。國外加熱轉底爐通常用天然氣,但我國天然氣資源不足,因此,需考慮我國具體條件下,轉底爐的加熱氣源問題.
真空冶金技術在鋅二次資源再生中的應用
真空法回收鋅的原理。在鋅二次資源中常伴有鐵、鋁、鉛、錫、鍺、銦、銀、銅等雜質, 採用真空蒸餾的方法從二次資源中回收鋅是基於二次資源中所含元素在純金屬狀態下飽和蒸氣壓的差異。在同一蒸餾溫度和一定的真空下, 蒸氣壓大的金屬就會優先揮發,蒸氣壓小的金屬就會少揮發或者不揮發。純金屬的蒸氣壓隨溫度的高低而異, 利用克勞修斯- 克萊普朗方程可得到其與溫度具有如下的關系
真空法回收鋅的實例。昆明理工大學真空冶金及材料研究所1991年研發了真空蒸餾處理熱鍍鋅渣提取金屬鋅的工藝技術及其設備卧式真空蒸餾爐, 使用該設備得到產品的化學成分如表1 所示[ 實踐證明控制適當的蒸餾條件, 鋅的直收率可達83.3%~86.33%, 所得鋅錠化學成分能夠達到國家2# 鋅標准。其工藝流程如下圖,
再生鋅潛力巨大,「如果鋅的二次金屬回收率達到消費量的30%,意味著我國每年可回收90萬噸鋅,這將在很大程度上緩解鋅資源的壓力」。中國有色工程設計研究總院原副院長兼總工程師蔣繼穆昨日在上海表示。蔣繼穆提出,重視再生資源的回收利用也是解決我國鋅資源短缺的有效途徑。在我國,鋅的二次資源回收利用重視不夠,處於自流狀態,沒有形成產業。據統計,我國近五年來再生鋅產量占消費量的比例為0.97%-3.5%之間,而發達國家鋅的二次資源回收率已經達到鋅產量的30%,可以看出我國再生資源利用程度相當低。蔣繼穆表示,對二次鋅資源回收,國家有關部門必須引起高度重視。首先是對用鋅量最大的鍍鋅鋼材的廢雜料集中收集,集中在能有效回收鋅的專門煉鋼廠處理。其次要加快研究步伐,盡快突破廢干電池經濟有效的回收工藝。除氧化鋅塗料難以回收外,鋅材、壓鑄合金,銅鋅合金等只要注意收集,均能較易回收其有價金屬。
四 結束語
目前鋅的二次冶金已幫助相關企業處理了多種鋅二次資源, 解決了企業長期積壓的廢棄物, 為有色金屬的再生提供新方法。在所取得的成果的基礎上,研究企業將進行不斷的完善和深入的研究其他有色金屬的再生利用。採用進行鋅二次資源的再生利用能從源頭上減少或消除環境污染, 符合建設資源節約型、環境友好型社會的發展道路, 為有色行業為節能減排貢獻一份力量。
五 參考文獻
鋼鐵廠高鋅含鐵塵泥二次利用的發展趨勢 彭開玉, 周雲, 王世俊, 李遼沙, 王海川,
( 安徽工業大學冶金與資源學院, 安徽馬鞍山243002)
二次鋅資源回收利用現狀及發展對策 肖松文,肖驍,劉建輝,馬榮駿
(長沙礦冶研究院研究開發中心)
真空冶金技術在鋅二次資源再生中的應用進展 韓龍, 楊斌, 戴永年, 劉大春, 楊部正
( 昆明理工大學真空冶金國家工程實驗室, 雲南昆明650093)
㈥ 鍍鋅底渣怎麼變成浮渣
鋼材熱鍍鋅米電米受米惠米聯少多少a米量米惠米聯米受米fe多惠b惠ee少ad惠聯曉受曉曉曉聯曉曉米多曉曉曉零鋅渣是鋼鐵板帶或結構類工件熱浸鍍鋅時,從鋅鍋的表面或底部撈出的,可以鑄成錠的,鋅含量超過量零%的固體廢物,不包括溶劑法熱鍍鋅過程中產生的廢熔劑、助熔劑和集(除)塵裝置收集的灰塵,以及採用化學法電鍍鋅所產生的鋅渣泥,以及其它被列為危廢類的鋅渣,以下簡稱鋅渣。
聯 鋅渣的成分
聯.受鋅渣的主要成分為鋅和少量鋁、鐵,及熱鍍鋅時夾入的銻、稀土等合金元素,具體如表受所示。
表受 鋅渣的主要成分
聯.電 混合鋅渣鋅含量不低於量零%。
聯.曉 當鋅渣中含有其它合金元素時,須分開處理。
多 鋅渣的處置
從鋅鍋的表面撈出的頂渣或從鋅鍋底部撈出的底渣分別倒入渣模內鑄成塊狀。不得混入溶劑法熱鍍鋅過程中產生的廢熔劑、助熔劑和集(除)塵裝置收集的粉塵,也不得混入鋅灰、垃圾等雜質,確保其
純度和清潔衛生。鋅渣塊應於室內存放,應注意防雨、防潮,防止化學物質腐蝕。
米 回收利用法方的選擇
米.受 生產鑄造用鋅合金錠
當按照GB/T受受少多的要求,採用鋅渣生產鋅合金鑄件原料錠時,推鍵採用熔析和精煉處理,除去鋅渣中的大部分氧化雜質和鐵鋁類化合物,獲得低雜質含量的鋅合金熔體,經檢測雜質含量符合GB/T受受少多
以後,鑄錠包裝。
米.電 生產鋅錠
當按照GB/T聯少零的要求,採用鋅渣生產高純度的鋅錠時,推鍵採用熔析和精煉處理後的鋅合金熔體,進一步進行真空蒸餾處理,將鋅蒸汽收集冷凝,獲得高純度的液態鋅,經檢測純度符合GB/T聯少零以後,鑄錠包裝。
米.曉 生產氧化鋅粉
當按照YS/T 受零多受的要求,採用鋅渣生產氧化鋅粉時,推鍵採用熔析和精煉處理後的鋅合金熔體,進一步進行常態蒸餾處理,鋅蒸汽氧化成氧化鋅粉,經檢測純度符合YS/T受零多受以後,收集後包裝。
少 回收利用流程
少.受 熔析和精煉處理
鋅渣熔析和精煉處理法方如下:
a)採用熔析精煉爐將鋅渣熔化、升溫到多量零~米零零,並通入精煉氣體進行精煉處理。鋅渣內的氧化類和鐵鋁類雜質上浮成為浮渣,從熔體內撈出,進一步處理;鋅渣內的鐵鋅類化合物下沉成為底渣,留在爐子底部,從熔體內分離,進一步處理;中部獲得低雜質含量的鋅合金熔體;
b) 低雜質含量的鋅合金熔體可以進一步進行蒸餾處理,也可鑄錠作為鋅合金鑄件原料;
c) 當作為鋅合金鑄件原料錠時,須向客戶提供標注主要成分的質量保證書;
d) 將精煉浮渣採用球磨、篩分和風選等法方,使含鋅的金屬類物質分離出來,返回鋅渣庫,二次循環回用,雜質作為固廢處理;
f) 精煉底渣收集起來,按照少.聯另行處理;熔析和精煉處理的工藝流程如圖受所示。
少.電 真空蒸餾法制備鋅錠
將熔析和精煉處理後低雜質的鋅合金熔體夾入真空蒸餾爐,在密封狀態繼續升溫至惠零零~惠受零,並利用真空泵進行減壓蒸餾,使得鋅合金熔體中的鋅以蒸汽的形式分離開來,將鋅蒸汽引入冷凝器,進行冷卻,鋅蒸汽便冷凝成高純度鋅液,鑄成鋅錠,符合GB/T聯少零的規定。蒸餾殘余物主要為鋅鐵、鋁鐵合金,按照少.聯另行進行處理。真空蒸餾法制備高純度鋅錠工藝流
㈦ 熱鍍鋅鋅鍋三元合金渣怎麼去除
常規的合金化鍍鋅板產品和純鋅鍍鋅產品的雙品種生產線切換上述兩個品種的生產模式為雙鍋模式,即合金化鍍鋅板產品和純鋅鍍層產品分別採用專用鋅鍋。合金化鍍鋅板產品生產過程中,帶鋼入鋅鍋板溫在460-500℃左右,鋅鍋溫度在455℃左右,鋅液Al含量較低(0.15%以內),帶鋼表面無法形成有效的Fe2 Al5阻擋層,帶鋼進入鋅鍋後表面鐵不可避免的地向鋅液中大量溶解,造成鋅鍋內鐵含量急劇升高到0.04%左右,鋅液中過飽和析出的鐵會與鋅液中的鋅發生反應形成大量鋅鐵化合物沉於鍋底形成底渣。在合金化鍍鋅板產品生產完畢後切換鋅鍋生產純鋅熱鍍鋅產品,此時,需調整鋅鍋內鋅液成分使底渣與鋅液中的鋁發生反應形成浮渣(鋅鍋通過離線加入高鋁錠方式將鋅鍋中的鋅鐵化合物底渣與加入的鋁反應形成鋅鐵鋁化合物形成浮渣),從而將鋅鍋中的底渣置換去除。
武鋼三冷軋鍍鋅機組目前只有一組鋅鍋,每次合金化鍍鋅板品種生產完畢之後,需進行鋅液鋁含量調整,將鋅液鋁含量升高到0.18%以上,確保形成Fe2Al5結合層保證純鋅鍍鋅板的表面附著性能。採用這種常規的鋅液鋁含量控制工藝時,無法有效快速去除鋅液中的底渣和降低鋅液鐵含量,在升鋁過程中以及升鋁後相當長的一段時間內,鋅液中會產生大量的懸浮渣,這種細小懸浮渣如果附著在帶鋼表面則會導致鋅粒缺陷。在這段時間內無法生產高等表面要求的純鋅熱鍍鋅板產品,這是因為:由於鋅粒硬度大,因此具有該種缺陷(鋅粒缺陷)的帶鋼在軋制或沖壓過程中會損傷基板,造成壓印缺陷,極大影響表面質量。鋅粒缺陷會造成大量汽車外板不符合汽車廠要求而改判,影響汽車板成材率,給鋼鐵公司造成大量經濟損失。
影響帶鋼表面質量的鋅粒缺陷,究其實質是因為鋅鍋中鋅液溶解的鐵含量過高超過鋅液的溶解度而呈過飽和狀態,過飽和析出的鐵與鋅液中鋁或鋅反應生成高硬度高熔點的鋅鐵鋁化合物。傳統工藝控制中,鋁含量控制在0.18-0.024%左右,很難降低鋅鍋中的鐵含量,一般在0.008-0.018%,鋅粒形成的外部條件仍滿足,生產過程中無法從源頭控制鋅粒缺陷產生。而在合金化鍍鋅板產品生產完畢後,鋅液中存在大量鐵鋅化合物(底渣),在其與鋅液中的鋁反應形成鋅鐵鋁化合物的過程中會大量消耗鋅液中的鋁降低鋅液中的鋁含量;同時合金化鍍鋅板產品生產期間鋅液中的鐵含量溶解度較高(0.04%左右),切換到純鋅板生產工藝後,溶解在鋅液中的鐵呈過飽和狀態,過飽和析出的鐵與鋅液中的鋁和鋅反應形成鋅鐵鋁化合物消耗鋅液中大量的鋁,會大量降低鋅液鋁含量;上述過程中形成的鋅鐵鋁化合物即懸浮渣會大量附著於帶鋼表面形成鋅粒鋅渣缺陷,而鋅液鋁含量的降低會使鋅液中鐵含量維持在一個較高值,在較長一段時間內造成鋅液中持續產生懸浮渣,從而使帶鋼表面產生鋅粒缺陷,影響高等級表面的純鋅鍍鋅產品的表面質量,在此期間無法生產高等表面純鋅鍍鋅產品。
因此,我們迫切需要一種快速去除鋅鍋內底渣的方法,以提高帶鋼質量、縮短除渣周期,提高高等級表面純鋅鍍鋅產品的產能。
技術實現要素:
本發明的目的在於提供一種快速去除鋅鍋內底渣的方法,該方法能快速置換單鋅鍋生產線在合金化鍍鋅板生產過程中所形成的底渣,降低鋅液中的鐵含量,抑制鋅粒產生,減少鋅粒缺陷發生概率。
本發明所採用的技術方案是:
一種快速去除鋅鍋內底渣方法,具體為:在合金化鍍鋅板生產完畢後,先往鋅鍋添加鋁含量為8%的鋅鋁合金錠,將鋅鍋內鋅液的鋁含量從傳統控制工藝的0.18-0.24%左右提升至0.38%-0.5%,在添加鋅鋁合金錠過程中實時檢測鋅鍋內鋅液中的鋁含量;當鋁含量達到0.38%-0.5%時停止添加鋁含量為8%的鋁鋅合金錠,向鋅鍋添加鋁含量為0.575%的鋅鋁合金錠,當鋅鍋內鋅液的鐵含量穩定在0.01%以內時,鋅鍋內底渣清除完畢。
當鋅鍋內鋅液的鐵含量穩定在0.01%以內時,即鋅鍋底渣清除完畢後,即可生產純鋅鍍鋅板(即可進入生產高等級表面汽車板的生產周期)。
在去除鋅鍋內底渣的這段時間內(在開始增加鋁含量至鋁含量穩定保持的這段時間內),因大量底渣置換為懸浮渣粘附到帶鋼表面,影響產品表面質量,所以只能生產一般商品材(建築結構用材和家電板內板用材)。
本發明中,在去除鋅鍋內底渣的過程中,隨著鋁含量頂峰值的升高,鋅鍋底渣的置換速率越快,清除耗時越短,能夠很好的滿足控制鋅粒缺陷產生的要求。
本發明的有益效果在於:
生產完合金化品種後,鋅液Al含量為0.14%左右,需要通過加入鋁含量8%的鋅鋁合金錠快速升高鋅液Al含量到0.18%以上,使之具備純鋅鍍層的可鍍性,在加入8%鋅鋁合金錠期間,鋅液中溶解的鐵會迅速地呈過飽和狀態析出形成懸浮渣。當鋅液鋁含量增加至0.38-0.5%左右,相對於傳統的鋅液Al含量目標值,底渣的反應效率會大幅提升,懸浮渣快速形成,有效縮短了高等級表面純鋅鍍鋅板的生產前的除渣調整周期。實際生產結果表明,採用本發明的鋁含量控制方法,不會造成鍍層附著力不合,也不會形成其它新的表面缺陷,除渣周期從原來的15天以上縮短到5天左右,釋放了更多的高表面等級(高附加值產品)的產能。
本發明能快速改善在合金化產品生產期間對鋅鍋的污染,快速置換鋅鍋底渣,減少鋅液鐵含量,抑制鋅粒產生,減少鋅粒缺陷發生概率,提高帶鋼表面質量。
附圖說明
下面將結合附圖及實施例對本發明作進一步說明,附圖中:
圖1是單鋅鍋生產線單一生產周期內生產合金化鍍鋅和高等級表面熱浸鍍鋅產品的鋁含量控制示意圖。
具體實施方式
為了使本發明的目的、技術方案及優點更加清楚明白,以下結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅用以解釋本發明,並不用於限定本發明。
實施例1
合金化鍍鋅板產品生產完畢後,連續往鋅鍋中添加鋁含量為8%的鋅鋁合金錠,將鋅鍋中鋅液的鋁含量從傳統控制工藝的0.20%左右提升至0.38%,在添加鋅鋁合金錠過程中實時檢測鋅鍋鋁含量,當含量達到0.38%後停止添加含量為8%的鋅鋁合金錠,改為添加鋁含量為0.575%的鋅鋁合金錠,用時240小時左右鐵含量降至0.01%以內,此時鋅鍋內底渣基本清理完畢,具備純鋅熱鍍鋅外板生產能力。參見圖1,在開始增加鋁含量至鐵含量降至0.01%左右的這段時間內,需要最低表面要求的純鋅鍍鋅板1000噸,需要一般要求的商品材9000噸。相對於傳統的鋅液Al含量控制范圍(0.18-0.24%),除渣調整階段所需表面要求較低的品種產量減少了5000噸左右,釋放了更多的高表面等級(高附加值產品)的產能。
實施例2
合金化鍍鋅板產品生產完畢後,連續往鋅鍋中添加鋁含量為8%的鋅鋁合金錠,將鋅鍋鋁含量從傳統控制工藝的0.20%左右提升至0.45%,添加鋅鋁合金錠過程中實時檢測鋅鍋內鋅液鋁含量,當含量達到0.45%後停止添加含量為8%的鋅鋁合金錠,改為添加鋁含量為0.575%的鋅鋁合金錠,用時120小時左右,鋅液中鐵含量降至0.01%以內,此時鋅鍋內底渣基本清理完畢,具純鋅熱鍍鋅外板生產能力。在開始增加鋁含量至鐵含量穩定保持的這段時間內,需要最低表面要求的純鋅鍍鋅板200噸,需要一般要求的商品材5000噸。
實施例3
合金化鍍鋅板產品生產完畢後,連續往鋅鍋中添加鋁含量為8%的鋅鋁合金錠,將鋅鍋鋁含量從傳統控制工藝的0.20%左右提升至0.50%,添加鋅鋁合金錠過程中實時檢測鋅液鋁含量,當含量達到0.50%後停止添加含量為8%的鋅鋁合金錠,改為添加鋁含量為0.575%的鋅錠,用時72小時左右,使鋅液中鐵含量降至0.01%以內,此時鋅鍋內底渣基本清理完畢。機組具備純鋅熱鍍鋅外板生產能力,在開始增加鋁含量至鐵含量穩定保持的這段時間內,需要最低表面要求的純鋅鍍鋅板200噸,需要一般要求的商品材3000噸。
本發明能快速改善在合金化產品生產期間對鋅鍋的污染,提高純鋅板帶鋼表面質量,降低雙鍋運行成本,目前該方法已經在武鋼冷軋三分廠鍍鋅線採用,應用於高等級合金化及純鋅外板生產。使用本方法能極為高效地減少鋅鍋鐵含量污染;合金化生產完畢後高等級純鋅鍍板的生產時間由原來的15天縮減到5天以內,每月可多生產10天高等級表面產品,按日產1040噸,高等級表面與一般表面產品差價200元計算,年效益為1067*200*12=256萬元/年,減少鋅鍋電費約400萬元/年。
應當理解的是,對本領域普通技術人員來說,可以根據上述說明加以改進或變換,而所有這些改進和變換都應屬於本發明所附權利要求的保護范圍。
㈧ 鋅含其他雜質怎麼處理可以去除
電解精煉法等。
1、用鋅做陽極,使用含鋅離子的電解液,通電可得到純度很高的鋅。
此法工藝簡單,但耗能巨大,提純效果相對差一些,一般用於對純度要求不高的情況。
2、真空蒸餾法,利用金屬的沸點不同,用蒸餾的方法可以得到高純度的鋅。
提純效果好,能耗低,工藝稍復雜。
3、區域熔煉法,利用雜質在固體鋅和液態鋅中的溶解能力不同,通過移動區域熔融,達到除雜的目的。
此工藝原理復雜,速度慢,對原料純度要求高,但產品純度非常高。一般以真空蒸餾產品為原料,提純更高純度的鋅。
㈨ 鋅合金產品的表面處理有哪些
鋅鋁壓鑄件是──種以鋅為主要成分的壓鑄零件。這種零件表面有──層很緻密的表層,裡面則是疏散多孔結構,又是活潑的兩性金屬。所以,只有採用適當的前處理方法和電鍍工藝,才能確保鋅合金上的電鍍層有良好的附著力,達到合格品的要求。
電鍍常用的鋅合金材料為,其主要成分為:鋁3.5%~4.5%,銅0.75%~1.25%,鎂0.03%~0.08%,餘量為鋅,雜質總和≤0.2%。
而925牌號的鋅合金含銅量高,也易於電鍍。通常,鋅合金的密度為6.4~6.5g/cm3,若密度<6.4g/cm3,電鍍後易發生起泡和麻點。總之,選材時務必嚴格把關。另外,壓鑄時模具必須設計合理,避免給電鍍帶來難以克服的缺陷(如麻點)。
(9)真空蒸餾法處理鋅鋁合金擴展閱讀
1、壓鑄件表面是一層緻密的表層,約0.05~0.1mm。在表層的下面則是疏鬆多孔的結構。為此,在磨光和拋光時,不要把表層全部拋去而露出疏鬆的底層。否則電鍍非常困難,而且會降低產品抗蝕性能。
2、壓鑄件在壓鑄過程中是由熔融態成為固態的。因為冷卻時的凝固點不同,在壓鑄件表面上往往會產生偏析現象,使表面的某些部分產生富鋁相或富鋅相。
為此在預處理時,不要採用強鹼和強酸去油和浸蝕。因為強鹼能使富鋁先溶解,而強酸又能使富鋅相先溶解,從而在壓鑄件表面上形成針孔和微氣孔,並且會殘留下強鹼液和強酸液,以致當鍍上鍍層後,容易引起脫皮和產生氣泡。
3、鋅合金壓鑄件的形狀一般比較復雜,電鍍應該採用分散能力和覆蓋能力較好的溶液。為了防止在凹入或掩蔽處發生鋅對電位正的金屬的置換,從而使結合力不好,預鍍層更應選擇分散能力和覆蓋能力好的鍍液。
4、所採用的鍍層最好為光亮鍍層,盡量避免拋光工序或者減輕拋光工作量。一方面因形狀復雜,不易拋光,另方面也可保證鍍層厚度,確保質量。
5、第一層鍍層如果採用銅層,其厚度應稍厚一些,因為當銅鍍到鋅合金錶面上時,銅層愈薄擴散作用發生的愈快,因此銅的厚度至少要達到7μm或者再厚一些。
6、多層鍍鉻層是鋅合金的陰極保護鍍層,所以鍍層必須有一定的厚度,保證鍍層無孔隙。否則由於鋅合金的電極電位較負,在潮濕的空氣中容易產生鹼式碳酸鋅的白色粉狀腐蝕產物,故必須根據產品的使用條件,選擇合適的鍍層厚度。
7、如果壓鑄工藝不合適,或壓鑄模具設計得不合理,使壓鑄表面產生冷紋、縮孔、疏鬆或針孔等,那麼,即使電鍍工藝採取了措施,也往往不能獲得滿意的鍍層。