导航:首页 > 废水知识 > 深圳滨河污水处理厂规模

深圳滨河污水处理厂规模

发布时间:2024-05-05 09:56:24

① 清河污水处理厂的介绍

清河污水处理厂总服务人口约81.4万,厂区总占地面积30.1公顷。总处理规模为回40万m3/d。一期工程答处理能力20万m3/d,总投资4.42亿元人民币,其中使用瑞典政府贷款折合人民币8300万元,2002年9月建成通水。二期工程处理能力20万m3/d,总投资2.75亿元,2004年12月建成通水。

② 城市供水

一、概述

深圳市地处华南地区,年平均降雨量1966.3mm,多年平均水资源总量20.51×108m3,人均水资源量250m3(2005年),人均淡水资源占有量仅为全国的九分之一和广东省的六分之一。淡水资源的短缺给深圳市人民生活和经济发展带来较大影响,市政府实行向水倾斜的政策,大力加强城市供水工程的建设。全市现有水源工程在97%供水保证率时的总可供水量为15.04×108m3,在东部供水二期工程和北线引水工程实施后,全市水源工程在97%供水保证率时的总可供水量为19.27×108m3,其中境外引水15.93×108m3,本地及其他水源3.34×108m3,基本满足了工业生产和人民生活的需要。随着人口、经济和社会的发展,深圳市今后用水量将持续增长,预测2020年全市人口将达到1014万人,GDP达到2万亿元人民币,预测届时需水量达到26×108m3

深圳市供水水源主要以境外引水和本地水为主,兼有少量地下水和海水利用。境外引水主要依托东深供水工程和东部供水工程两大境外调水水源工程,以供水网络干线及其支线、龙口-西坑供水工程、北环管道以及深圳水库东侧沙湾泵站为原水输配系统,实现东深引水、东部引水和本地水源相互连通、合理调配。境外引水及输配水工程联合本地蓄水工程形成了全市供水水源网络系统。

深圳市城市供水水厂属多中心、组团式布局,水厂建设点多面广,供水规模、技术状况参差不齐,既有设施、设备、工艺先进,自动化程度较高的大型水厂,又有设施设备简陋、陈旧、落后的中、小型水厂。目前全市共有供水企业近27家,水厂59座,日供水能力约590.5×104m3,供水管道长度约1.3×104km,用水人口接近1300万人次,2006年全市主要供水企业总供水量14.5×108m3

二、城市水资源现状

(一)水文气象

深圳市属南亚热带海洋性季风气候,雨量充沛,日照时间长。年平均气温为225℃,实测最高气温为38.7℃,实测最低气温为0.2℃,无霜期为355d,年平均日照时数1933.8h,年平均湿度76.8%。该市位于东亚季风区,受季风环流控制,冬半年和夏半年气流明显交替,影响到四季的气候变化。海洋对该市气候影响较大,使深圳地区气温的年较差及日较差都较小,年降雨量大,雨日多,大气温度高。海岸山脉等地貌带的存在,使得冬季气温南北差异较大,风速自南向北递减。

(二)降雨

深圳市多年平均降雨量为1966.3 m m,降水量在地区上的分布主要受海岸山脉等地貌带影响,呈东南向西北递减的趋势。多年平均雨量:东部地区在2000 m m以上,中部地区在1700~2000 m m,西部地区在1700mm以下。

深圳市降水从成因上分析,由台风带来的台风雨量在全年的降水量中所占比重较大。据1950~1979年30年的资料统计,多年平均台风雨量为689.0mm,占多年平均降水量的36%。最大年份的台风雨量可达1648mm(1964年),占当年降水量的69%。深圳市降水的另一个特点是降水强度大,暴雨多。多年平均年暴雨量约占年降水量的40%左右。降雨量的年内分配很不均匀,多年平均汛期4~9月降水量占全年降水的85.3%。

(三)蒸发

深圳市气候炎热,常风较大,多年平均降雨量大,水面蒸发量也大。根据多年资料统计计算,多年平均蒸发量为1752mm。

水面蒸发量年内分配不平衡,汛期(4月至9月)气温高,水面蒸发大,蒸发占全年的54.8%;非汛期(10月至次年3月)气温低,水面蒸发小,蒸发占全年的45.2%。

经分析,1980年以后,深圳市的水库蒸发能力有增加的趋势,其中1990年以后,水面蒸发能力明显比1980~1990年这十年有所增加,增幅达16%。

蒸发量在空间上变化总的趋势是由东南向西北内陆递减(图2-1-8)。

图2-1-8 铁岗水库蒸发量变化过程线

(四)水资源总量

一定区域内的水资源总量是指当地降水形成的地表和地下产水量,即地表径流量与地下水资源量的总和。

1.地表水资源

深圳市地表径流量主要靠降雨补给。根据《深圳市水资源综合规划》成果,深圳市多年平均径流总量为19.18×108m3,50%、75%和97%保证率时年径流总量分别为18.28×108m3、13.90×108m3和7.70×108m3

2.地下水资源

深圳市地下水按其储存条件、水理性质和水力特征,可分为松散岩类孔隙水、基岩裂隙水和岩溶水三大类型。地下水资源总储量为10.34×108m3,其中以径流形式存在的地下水储量约为5.85×108m3(即可变储量)。

3.水资源总量

根据以上分析,深圳市地表水资源总量为19.18×108m3,地下水资源总量为5.65×108m3,扣除重复计算量4.34×108m3,则深圳市水资源总量为20.5×108m3

全市多年平均降水量1966.3mm中约有56%形成河川径流,其余约44%消耗于地表水体、植被、土壤的蒸散发和潜水蒸发;年降水量中有23%入渗地下补给地下水,成为地下水资源,其余部分主要消耗于潜水蒸发。这基本符合深圳市自然地理特点和降水、地表水、地下水三水转化规律。

4.河流水系

深圳市境内共有大小河流310余条(含其支流在内),其中,流域面积大于10km2的河流69条,大于100km2的河流5条,主要是观澜河、龙岗河、坪山河、深圳河和茅洲河。在310条河流中有71条河流为感潮河流。小河沟数目多、分布广、干流短是深圳市水系的一个特点。

深圳市主要河流概况见表2-1-7

表2-1-7 深圳市主要河流概况

续表

5.现状供水量汇总

深圳市的供水主要来自境内的中、小型蓄水工程和境外引水工程,地下水工程一般作为部分厂家自备水源。

图2-1-9 2006年深圳市供水量统计图

2006年,全市总供水量17.31×108 m 3,其中境外引水总量11.89×108 m 3,占总供水量的68.7%。特区为5.31×108m3,宝安区为3.76×108m3,龙岗区为2.82×108m3。供水量组成为地表水源供水16.76×108m3,占总供水量的68.7%,地下水源供水5541×104m3,占总供水量的3.2%,污水处理回用42×104m3,占总供水量的0.02%。2006年深圳市行政区分区供水量见表2-1-8,供水量统计图见图2-1-9。

表2-1-8 2006年深圳市行政分区供水量 单位:×104m 3

三、供水工程现状

(一)供水格局

目前在供水格局上,深圳市已形成以特区内片区、宝安片区(含光明新区)和龙岗片区为三大单元的分区供水格局。

特区内水源和原水输配管网发展较为完善,已初步形成由北环输水干管供给东深水和由供水网络干线供给东部水的供水系统。在境外工程检修期,主要由深圳、梅林、西沥和长岭陂水库调蓄水量供给。

宝安片区主要利用供水网络干线引入东部水,龙西工程引入东深水,结合铁岗、石岩、长流陂等调蓄水库形成主要供水水源网络。其中宝安区中西部(宝安中心组团、西部高新组团和西部工业组团)主要依靠铁石支线、石松支线引入东部原水,以及铁岗、石岩水库的调蓄水量供给,东部龙华、观澜片区(中部综合组团)以通过西坑水库取用龙西供水工程分自龙口泵站的东深水为主。

龙岗片区水源由东部水源、东深水源及本地水源3部分组成。本地水源相对较缺乏,只能满足各街道少量用水,大部分原水依靠东部供水工程和东深供水工程供给,其中东部原水通过供水网络干线,经坪地支线、横岗调蓄工程、大山陂应急供水工程、炳坑水库应急供水工程供给;东深原水依靠龙口泵站和沙湾泵站供给。正在建设的大鹏半岛原水工程将把东部水送至赤坳水库进行调蓄,并送至葵涌径心水库供给大鹏半岛。

(二)供水工程

深圳市供水工程现状,主要包括境外引水工程、输配水工程、蓄水工程以及少量的提水、地下水和海水利用工程。

1.境外引水工程

深圳市的境外水源来自东江。东深供水工程和东部供水水源工程是深圳市两大境外水源骨干工程。

东-深供水工程是向香港、深圳市以及工程沿线东莞市城镇提供东江原水的跨流域大型调水工程。工程设计供水规模为24.23×108 m 3/a,设计流量为100 m 3/s,其用水量分配为:香港11.0×108 m 3,深圳市8.73×108m3,沿线4.0×108m3,机动富余水量0.5×108m3。

东部供水水源工程分为两期,一期工程取水量为3.5×108 m 3/a,设计流量15 m 3/s。目前正在建设东部水源二期工程,工程取水量为3.7×108m3/a,设计流量15m3/s。两期工程建成后,东部供水水源工程可引水7.2×108m3/a。

2.输配水工程

为实现境外引水与本地水库联合调度,深圳市兴建了供水网络干线、北环输水干管以及北线引水工程等输水工程,通过铁石支线、石松支线、坪地支线、横岗调蓄工程、龙口-西坑供水工程等支线工程,连通深圳、西沥、松子坑、清林径、铁岗、石岩等调蓄水库,将东江原水输送到全市各个片区,形成东部水和东深水的双水源供水保证体系。目前,全市已建及在建各级配套辅助水支线15条,总长213.7km。

3.蓄水工程

截至2006年,全市共有蓄水水库173座,其中供水水库有124座,包括中型水库10座,小(1)型水库62座,小(2)型水库52座,供水水库在50%、75%和97%保证率情况下的可供水量分别为4.04×108m3、3.31×108m3和2.69×108m3

4.其他供水工程

深圳市目前建成较大的河道提引水工程有2处,分别位于茅洲河和观澜河。茅洲河提水能力为5 m 3/s,观澜河提水工程提水能力为6 m 3/s。全市每年还有少量的地下水开采工程,年开采量约0.55×108 m 3,其中浅层地下水0.23×108m3,深层地下水0.32×108m3。深圳市是一个拥有丰富海水资源的区域,目前全市尚无海水淡化工程,海水基本用于电力企业的工业冷却水,2006年深圳市海水直接利用量为72.9×108m3

四、城市供水工程规划与实施

(一)水源规划格局

为确保深圳市供水安全,全市规划新建与扩建水库,修建储备水源工程,开展非传统水资源利用、完善供水网络建设和配套水厂建设。

通过水资源合理配置,深圳市城市供水今后总体布局将形成以东江径流、本地水库自产水和海水为“源”,以东部供水水源工程、东深供水工程和供水网络干线、北线引水工程等输水工程为“线”,以深圳、铁岗、公明、松子坑、清林径和海湾等水库为“调蓄中心”,以净水厂为“点”的跨流域、跨区域的引、蓄、提、供、用协调统一的城市供水水资源开发利用体系。

(二)水源建设

1)境外水源工程建设:完成东部供水二期工程。

2)蓄水工程建设:新建东涌水库、洞梓水库、径子水库共3坐水库;扩建铁岗水库、铜锣径水库、长岭皮水库、松子坑水库、鹅颈水库、径心水库、甘坑水库、铁坑水库和打马沥水库9座水库。新建、扩建水库97%保证率下的新增供水量为1960×104m3,增加调蓄库容1.20×108m3

3)储备水源建设:建成清林径引水调蓄工程、公明供水调蓄工程、海湾水库工程,增加调蓄库容4.0×108m3

4)供水网络建设:完成北线引水工程(120×104m3/d)、大鹏半岛支线供水工程(沙湖-葵涌段)(40×104m3/d)、大鹏半岛水源工程-坝光支线工程(30×104m3/d)、盐田支线供水工程(18×104m3/d)、大工业城支线供水工程(55×104m3/d)6条分区分片供水的输配水工程建设。

5)非传统水资源开发利用建设:实施奥林匹克体育中心雨水利用工程、龙华二线拓展区雨水利用工程、深圳市侨香村经济适用房住宅区、龙岗高级技工学校雨水利用工程及莲花山公园雨洪利用工程;开展南山蛇口(2.7×104t/d)、福华德电厂(0.2×104t/d)海水淡化及盐田、南山、大鹏半岛片区海水直接利用试点工程建设;建设以南山、福田、滨河、罗芳、西丽、草埔等污水处理厂为主体的污水回用工程片区,开展蛇口、人民大厦、中银小区、鲸山别墅区、越众小区、翠园小区及福华大厦等中水回用试点工程建设。

(三)城市供水水厂

新建南山水厂、红木山水厂、光明水厂、朱坳水厂(四期)、凤凰水厂、石岩水厂、獭湖水厂、大工业城水厂等主要水厂;扩建蛇口东滨水厂、笔架山水厂、盐田水厂、甲子塘水厂、五指耙水厂、观澜茜坑水厂、荷坳水厂、南坑水厂、苗坑水厂、鹅公岭水厂、坪地水厂及中心城水厂等主要水厂。新建和扩建水厂新增规模246×104m3/d。

五、环境影响评价

(一)供水水源水环境现状

1.供水水库

根据现状调查,深圳市主要供水水库水质总体状况良好,绝大部分水库均为Ⅱ类水水质,深圳水库、铁岗水库、赤坳水库在个别水期内均达到Ⅰ类水水质标准,水质状况进一步好转。深圳市已划定水源保护区的28座水库中,仅7座水库水质超标,其中5座均为未设常规监测断面的水库,其余2座位于石岩水库和罗田水库,主要超标物为COD和高锰酸盐,超标的主要原因为入库支流的COD贡献率较大,应采取措施,进一步控制入库支流的污染负荷。深圳市饮用水水源地营养状态总体良好,仅个别水库有轻度富营养化,这部分水库数量仅占评价水库数量的7%。2005年深圳市主要水库水质评价结果汇总见表2-1-9。

2.提水河道

据最新河道普查结果,由于工业废水、生活污水的排放和雨污混流,全市大小河流均存在不同程度的污染,绝大部分达不到水功能、水质的要求。作为深圳市供水水源的茅洲河与观澜河水环境质量逐年恶化,水污染问题显得尤为突出。

表2-1-9 2005年深圳市主要水库水质评价结果总表

1)茅洲河:茅洲河上游溶解氧、高锰酸盐指数、生化需氧量、非离子氨、挥发酚、石油类和总磷的年均值超过Ⅲ类标准,悬浮物、亚硝酸盐氮、总汞、总镉和六价铬的监测值也出现超标,水质劣于V类。茅洲河下游悬浮物、溶解氧、高锰酸盐指数、生化需氧量、总镉、石油类和总磷的年均值超标,总硬度和非离子氨的监测值也出现超标、水质劣于V类。

2)观澜河:观澜河溶解氧、高锰酸盐指数、生化需氧量、非离子氨、挥发酚、石油类和总磷的年均值超过Ⅲ类标准,悬浮物、亚硝酸盐氮、总汞、总镉和六价铬的监测值也出现超标,水质类别为劣V类。

深圳市本地水资源缺乏,现有的供水水源水环境的恶化,不仅严重影响城市景观和人居环境质量,也进一步加剧了水资源的短缺。

(二)水环境保护规划

1.规划目标

通过采取水源涵养林建设等各种水生态系统保护或修复措施,遏制供水水源局部水生态系统失衡趋势,促进其良性循环。确保城市饮用水库水源地水质达标率由98%提高到100%。水源保护区内平均林地覆盖达到65%以上,林木郁闭度达到95%以上。

2.主要措施

1)污染源控制:污染源控制包括对污染水体的点源和面源的控制。点源污染的控制以排污口截污、污水处理和排水系统建设为重点。面源污染控制主要包括①源头控制;②湖滨绿化结合自然湿地以控制湖周面源污染;③末端治理。

2)人工湿地:人工湿地系统是利用湿地净化污水能力人为建设的生态工程措施,该措施是将石、砂、土壤等材料按一定的比例组成基质,并栽种经过选择的水生、湿生植物,组成类似于天然湿地状态的工程化湿地系统。人工湿地分为浮生植物系统、挺水植物系统和沉水植物系统。通过基质、植物、微生物的净化作用,对TN、TP、COD、BOD及重金属等有较高的去除率,可以获得污水处理与资源化的最佳生态效益、经济效益和社会效益,是控制面源污染的重要工程措施之一。

3)前置库:将原有的流域及水库分为主库、前置库及上游的流域区。前置库可以看作一个污水处理系统,是将上游的污水在入库之前先被纳入前置库中,经过沉淀、植物吸收,水变清后再排入主库中。前置库对原来直接进入主库的流水进行净化处理,可以减少主库源水的污染物,同时可以减少泥沙入库量。前置库技术因其费用较低,可以多方受益、适合多种条件等优点,是目前防治水库水源地保护区内面源污染的有效途径之一。

4)库滨带修复:通过在库滨实施人工湿地、生态砾石及植被修复等生态工程,对水力流动条件较差和重污染区水体进行处置净化,吸附和转移来自面源的污染物、营养物,改善水质,截流固定颗粒物,减少水体中颗粒物和沉积物,同时为生物繁殖生长提供栖息地,达到库滨带的生态修复。

5)水源保护林:水源保护林建设能改善林相结构,增加林地覆盖率,提高水源涵养能力,有效控制和减轻面源污染。由于森林的过滤、吸收和荫蔽作用,当降水和径流经过森林的林冠层、枯落物层和土壤层的过滤、截留作用后,可以大大减少水中有害化合物的种类与浓度;而且由于水体水温低、流动性等特点,因而水质纯净、溶解氧丰富、病原体较少。

6)水库水体修复技术:通过可控制的人工溪流生态系统,调节水流、光强和基质等条件,发挥着生藻类生长迅速、繁殖快的特点,去除水体的过剩营养,改善水质,增加溶氧。同时,结合水草恢复和景观建设等工程,运用食物网理论和生物操纵技术,在符合地表水Ⅲ类标准的湖区调整渔业结构,以土著鱼类的增殖为重点,发展无环境污染的生态渔业,建设鱼类观赏区和垂钓区;劣于地表水Ⅲ类标准的湖区,考虑以鱼控藻措施,重点建设鱼类控藻区。

7)水源保护区隔离工程:隔离工程主要是在一级水源保护区边界设界桩、建围网,实行半封闭管理,清除苗木、花场,补种水源涵养林,荔枝等果林先期自然生长,逐步改造成水源涵养林。实施水库一级水源保护区隔离工程,可以有效阻隔外来人员进入保护区,路边防撞栏、拦蓄池(在其他项目中建设)等能有效减低危险运输品倾泻入水库的风险,提高水库水质的安全保障。

六、存在问题及建议

(一)存在问题

1)水量供需矛盾依然存在。根据预测深圳市2020年城市需水量将达到26×108m3,目前可以确定的可供水量为19.27×108m3,供水缺口达到6.7×108m3,这部分缺口规划采用非传统水资源开发利用与加大境外引水来弥补。然而非传统水资源开发利用是一个长时期逐步进行的过程,满足远期用水还存在一定的缺口。

2)非传统水资源利用尚处于起步阶段。从供水水源看,深圳市水资源的开发利用大多局限于传统水资源,大力开发利用雨洪、海水、污(中)水等非常规水资源,是建立资源节约型社会的要求,也是解决深圳市水资源短缺的途径之一。深圳市拥有丰富的非常规水资源量,具有一定的开发利用潜力,但由于缺乏科学的规划指引以及其他实际存在的困难,目前无论是污水处理回用、海水利用还是雨洪利用仅处于起步阶段。

3)缺乏多水源优化调配系统。深圳市水源组成众多,输配网络复杂,现有的水源调配主要是单一水源工程的需求调配。今后随着非传统水源的发展、供水网络的逐步建成与完善,各种水源之间需要实施联合调度,确保各水源工程最大限度地发挥各自的功能,取得最佳的经济效益。

(二)建议

1)开展解决远期需水缺口的相关研究。由于深圳市远期需水仍然存在一定缺口,仅仅依靠加大非传统水资源的利用来解决存在许多方面的不确定因素是不够的。为了保证城市的供水安全,深圳市应加强与周边城市的水务合作,从流域、区域水资源优化配置的角度开展增加境外引水的研究,经济合理地提出解决深圳市远期需水缺口措施。

2)建立供水水源优化调度系统。为使有限的水资源得到充分合理的利用,需要建立以取、输、配水各子系统组成的优化调度系统,最大限度地提高工程供水的可靠性与经济性。

3)加强各组团供水管网联系。特区外供水主要以街道为单位,相互之间缺乏联系,不利于增加供水的互补性和提高供水的安全性。建议加大各组团之间的供水管网联系,使各组团之间甚至各个区之间的供水能够相互调节,提高整个城市的供水保证率。

4)进一步加大非传统水资源开发利用。由于深圳市本地水资源缺乏,长期依靠境外引水具有一定的不安全性,也不符合发展循环经济的总体思路,今后应重点加强非传统水资源的开发利用。同时,政府应制定相关的法规条例,对于非传统水资源的开发利用给予一定的优惠措施,使非传统水资源的开发利用具有经济动力与政策保障。

③ 怎么选择生活污水处理工艺都需要哪些数据

目前城市生活污水的生化处理技术已是十分成熟,可供选择的工艺有普通活性污泥法、氧化沟法和间歇式活性污泥法(SBR)等以及一些演变工艺。这些工艺花样繁多,人们在不断探索和改进,力图使工艺更加高效和节能。
普通活性污泥法具有运行稳定、管理方便的优点,前人在设计和运行方面积累了大量的工程经验,但普通活性污泥法也存在着在运行不当时或进水水质异常时易发生污泥膨胀导致出水恶化的问题,同时由于污泥泥龄较短和没有缺氧工况;对氮、磷的去除率不理想,随着社会经济发展,进入水体的污染负荷已严重超过水体自然净化能力,特别是氮、磷在自然水体中积累,造成水体的富营养化已成为人们普遍关注的问题。所以城市生活污水的脱氮除磷显得越来越重要。
正是在这种背景下,氧化沟、SBR工艺近年来在处理城市污水中得到了广泛的应用,对控制水体氮、磷积累起到了良好效果。
下面就若干主要生物除磷脱氮工艺叙述如下:
1. 按空间分割的连续流活性污泥法
1.A2/O法及UCT法
A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称,A2/O工艺于70年代由美国专家在厌氧—好氧除磷工艺(A/O工艺)的基础上开发出来的,该工艺在厌氧—好氧除磷工艺(A/O工艺)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,以达到硝化脱氮的目的。
A2/O工艺它可以完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能,厌氧池和好氧池联合完成除磷功能。
其流程简图见图3-1

进水 出水
厌氧池缺氧池好氧池 二沉池

混合液回流
活性污泥回流

图1A2/O法流程简图

首段厌氧池,流入原污水与同步进入的从二沉池回流的含磷污泥混合。本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中BOD浓度下降;另外,NH3--N因细胞的合成而被去除一部分,使污水中NH-3-N浓度下降,但NO-3-N含量没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO-3-N和NH-2-N还原为N2释放至空气,因此BOD5浓度大幅度下降,而磷的变化很小。
在好氧池中,有机物被微生物生化降解,而继续下降;有机氮首先被氨化继而被硝化,使NH-3-N浓度显著下降,但随着消化过程使NO-3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。所以,A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH-3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。厌氧池和好氧池联合完成除磷功能。
本工艺在系统上是最简单地同步除磷脱氮工艺,总水力停留时间小于同类工艺,在厌氧、缺氧、好氧交替运行的条件下可处理抑制丝状繁殖,克服污泥膨胀、SVI值一般小于100,有利于处理后污水与污泥的分离,运行中在厌氧和缺氧段内只需轻缓搅拌,运行费用低。由于厌氧、缺氧和好氧三区严格分开,有利于不同微生物菌群的繁殖生长,因此脱氮除磷效果较好。目前,该法在国内外使用较为广泛。为解决回流污泥中硝酸盐对厌氧放磷的影响,工程上可将回流污泥分两点厌氧池回流,大部分污泥回流至缺氧池,少部分污泥回流至厌氧池。
为了解决A2/O法回流污泥中过多的硝酸盐对厌氧放磷的影响,产生了UCT工艺,流程简图见图3-2。
缺氧回流 混合液回流
100%~200% 100%~300%
进水 出水
厌氧池 缺氧池 好氧池 二沉池

污泥回流 50%~100% 剩余污泥

图2UCT除磷脱氮工艺

与A2O法相比,UCT工艺为同之处在于污泥先回流至缺氧池,而不是厌氧池,再将缺氧池部分混合液回流厌氧池,从而减少回流污泥中硝酸盐对厌氧放磷的影响。但UCT工艺增加了一次回流,多一次提升,运行费用将有所增加。
2.氧化沟法
氧化沟又称“循环曝气池”,污水和活性污泥的混合液在环状曝气渠道中循环流动。氧化沟是50年代由荷兰的巴斯维尔(Pasveer)开发,它属于活性污泥法的一种变形,由于它运行成本低,构造简单,易维护管理,出水水质好、运行稳定、并可以进行脱氮除磷,因此日益受到人们重视并逐步得到广泛应用。
氧化沟处理系统的基本特征是曝气池呈封闭式沟渠型,它使用一种方向控制的曝气和搅动装置。一方面向混合液中充氧,另一方面向反应池中的物质传递水平速度,使污水和活性污泥的混合液在沟内作不停的循环流动。从反应器的观点看,氧化沟属于一种独具特色的连续环式反应器(CLR)。
氧化沟除本身的沟体外,最重要的组成部分就是曝气机。氧化沟的曝气设备起着向水中供氧,推动水循环流动,以及混合和保证沟中的活性污泥呈悬浮状态等作用。氧化沟的曝气设备不是沿池长均分布,而是分区定位排列,一般位于氧化沟的进水一端。由于氧化沟巧妙地结合了连续式反应器和曝气设备特定的定位布置,使氧化沟具有若干与众不同特性。
1)氧化沟结合推动和完全混合的特点,有利于克服短流和提高缓冲击能力。
一般氧化沟的入流设置在曝气区上游,而出流安排在入流口的上游。这样的安排,从短期内(循环一周)看,氧化沟具有推动系统的特点;若从长期内(循环多周)看,氧化沟又具有完全系统的特点。两者的结合,一方面是入流必须至少循环一周才能流出,这就是基本上杜绝了短流,另一方面,循环的混合液又可提供很大的稀释倍数对入流进行稀释,提高了对冲击负荷的缓冲动力。因而氧化沟是一个有效和可靠的处理系统。
2)氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化反硝生物处理工艺。
氧化沟由于结合了完全混合的推流式反应器的特征,同时曝气器又是定位分区布置的,很明显,沿水流方向存在溶解氧的浓度梯度。在氧化沟中存在曝气区、需氧区的氧含量则很有限。因此,氧化沟特别适合于硝化和反硝化。这样,一方面可利用反硝化过程所释放的氧来满足10-20%的需氧量,另一方面可利用反硝化过程恢复部分碱度。
3)氧化沟功率密度的不均匀分配,有利于氧的传递、液体混合和污泥絮凝。
由于氧化沟上曝气设备的不均匀设置,使氧化沟内的功率密度呈不均匀分布。氧化沟内存在两个能量内,一个是设备曝气装置的高能量区,一个是环流的低能量区,这二者之间可以认为是能量由高到低的弥散过程。
4)氧化沟的整体体积功率密度低,可节省能量。
氧化沟遵守着动量守恒原则,一旦池内混合液被加速到所需流速时,维护循环所需要的水力动力只要克服摩阻和弯道损失即可。与弥散作用不同,循环或对流混合能够增强其自身的搅动作用。结果,为了保持使用固体悬浮的速度,所需要的单位容积动力就大大低于其它系统。
氧化沟包括很多类型如卡鲁塞尔、三沟式、澳巴勒、D型氧化沟、组合式氧化沟等,氧化沟的水流特征介于推流式和完全混合之间,也可以认为是完全混合池,抗冲击负荷强,通过控制曝气转刷的开停和转速来控制氧化沟内某池段溶解氧的浓度,形成厌氧、缺氧和好氧区,因此也具有除磷脱氮的功能。
D型氧化沟为双沟交替工作式氧化沟,由池容完全相同的两个氧化沟组成,两沟串联运行,交替地作为曝气池和沉淀池,不单设二沉池。D型氧化沟的缺点主要是曝气设备利用率低、池容积利用率低。为了达到脱氮目的,在D型氧化沟的基础上又发展了半交替工作式的DE型氧化沟,该沟设独立的二沉池和回流污泥系统,两沟交替进行硝化和反硝化。
T型三沟式氧化沟集缺氧、好氧和沉淀于一体,两条边沟交替进行反应和沉淀,无需单独的二沉池和污泥回流,流程简洁,具有生物脱氮功能。由于无专门的厌氧区,因此,生物除磷效果差,而且,由于交替运行,总的容积利用率低(约55%),设备总数量多,设备空置率高。为了达到除磷脱氮目的,提高设备利用率,结合T型、DE型氧化沟的特点,可以组合成半交替工作式的DT型氧化沟,该沟同样具有独立的二沉池和回流污泥系统,三条沟根据进水水质、水量的变化,交替进行硝化和反硝化。
组合式氧化沟是随着各种氧化沟的广泛应用而发展起来的一种新型氧化沟污水处理技术。组合式氧化沟就是不单独设二次沉淀及污泥回流设备的氧化沟。近几年在我国四川、山东等地均有组合式氧化沟污水处理工艺的污水厂建成投用,运行效果较好。组合式氧化沟技术既有氧化沟处理工艺的基本特征,又由于曝气净化与固液分离的一体化而独具特色:
A.工艺流程短,构筑物和设备少,不设初沉池、二沉池、污泥消化池,故投资省,占地少。
B.污泥自动回流,不设污泥回流泵站,因此能耗低,管理简便容易。
C.处理效果优于我国国家二级排放标准,工作稳定可靠。
D.产生的剩余污泥量少,污泥不需消化,且达到稳定状态,易税水,不会带来二次污染。
E.一体化氧化沟造价低、建造快、设备事故率低、运行管理方便。
F.一体化氧化沟固液分离效果优于普通的二沉池,能承受较大的冲击负荷,使整个系统能够在较大的流量范围内稳定运行。
G.污泥回流及时,减少了污泥膨胀及反消化浮泥的可能。
3.AB法
AB法处理工艺,系吸附生物降解工艺的简称,是把德国亚琛大学宾克(Bohnke)教授于70年代中期开创的。由于它在处理效率、运行稳定性、工程投资和运行费用等方面与传统活性污泥法相比均有明显优势,80年代开始为生产实践所采用。目前国内已有很多用于处理城市污水的实例,如青岛海泊河废水处理厂,泰安废水处理厂、深圳滨河污水处理厂,山东淄博污水处理厂、杭州大关污水处理厂以及广州猎德污水处理厂等。
A段的效应
1)A段中存活大量的细菌,而且还不断地进行繁殖、适应、淘汰、优选等过程,从而能够培育出适应性和活性都很强的微生物群体,本工艺不设初沉池,使原污水中的微生物全部进入系统,使A段成为一个开放式的生物动力学系统。
2)A段负荷较高,有利于增殖速度快的微生物增长繁殖,而且在这里成活的只能是抗冲击能力强的原核细菌,其它微生物都不能存活。
3)污水经A段处理后,BOD去除60~70%;可生化性大大提高,有利于B段工作。
4)A段污泥产率较高,吸附能力强,重金属、难降解物质以及氮、磷等植物性营养物质等,都可以通过污泥的吸附作用,而得到部分的去除。
5)A段对有机物的去除,主要是靠污泥絮体的吸附作用,生物降解只占三分之一左右,由于物理化学作用占主导作用,因此,A段对毒物、 pH值、负荷以及温度的变化都有一定的适应性。
B段的效应
1)B段所接受的污水来自A段,水质、水量都比较稳定,冲击负荷不再影响本段,净化功能得以充分发挥。
2)B段承受的负荷率为总负荷率的40~50%,曝气池的容积较传统法减少。
3)B段的污泥龄较长,氮在A段得到了部分去除,BOD/N比值有所降低,这样,B段具有进行硝化反应的工艺条件。
AB法工艺是由超高负荷性污泥系统(A段)和中低负荷活性污泥系统(B段)串联组成,A段的主体为吸附池及中间沉淀池,B段的主体为曝气池及二次沉淀池,AB两段各自拥有独立污泥回流系统。两段完全分开,各自有独特的生物群体,有利于功能稳定。A段属高负荷低供氧,可去除BOD5约50%,曝气时间仅为0.5hr左右,污泥负荷在3kg/kg.d以上。B段为低负荷,要满足脱氮除磷要求,还必须在B段采用A2/O法或其他能脱氮除磷的工艺,如深圳滨河污水处理厂B级就是采用三槽式氧化沟工艺。因此本方法只适用于高浓度污水,一般认为BOD5在250~300mg/l以上才合理。从国内污水处理厂的调查情况来看,AB工艺的投资指标是居高位的。
A-B法的工艺特点
AB法工艺的特点:A段负荷高,曝气时间短,仅0.5h左右,污泥负荷高达2~6kgBOD5/(kgMLSS.d)。B段污泥负荷较低,为0.15~0.30kgBOD5/(kgMLSS.d)。该法对毒物、pH值、负荷以及温度的变化都有一定的适应性;运行稳定性较好;运行费用相对较低;工艺复杂,工程构筑物较多,设备较多;污泥量较大;该法对有机物、氮和磷都有一定的去除率,适用于处理浓度较高、水质水量变化较大的污水,通常要求进水BOD5≥250mg/l,AB法才有明显的优势。本工程设计进水BOD5为100mg/l,采用AB法显然不太合适。
3.2.1按时间分割的间歇式活性污泥法
序批式活性污泥法,又称间歇式活性污泥法,近几年来,已发展成多种改良型,主要有:传统SBR法、CASS法、ICEAS法、Unitank法和MSBR法。
1.传统SBR法
间歇式活性污水法(SequencingBatch Activated Sludge Reactor缩写为SBR活性污泥法),又称序批式活性污泥法,其污水处理机理与普通活性污泥法完全相同。SBR法于70年代由美国开发,并很快得到了广泛应用。
由于SBR运行操作的高度灵活性,在大多数场合都能代表连续活性污泥法,实现与之相同或相近的功能。改变SBR的操作模式,就可以模拟完全混合式和推流式的运行模式。在反应阶段,随着时间的推移,反应池的有机物被微生物降解,废水浓度越来越低,非常类似稳态推流式,只不过这是一种时间意义上的推流。如果进水期很长,反应池中废水的有机物在这个时期累积程度非常小,那么这种情况就接近于完全混合式。
与连续流相比,SBR有许多优点,具体如下:
(1)运行管理简单 系统控制硬件如电动阀、气动阀、电磁阀、液位传感器、流量计、时间控制器及微电脑已产品化,能够为SBR系统提供可靠的自动化控制,大大缩短了管理人员的操作时间,甚至实现无人化管理。
(2)降低造价,减少占地 由于SBR将曝气与沉淀两个过程全并在一个构筑物中进行,不需要二次沉淀池和污泥回流系统,甚至在大多数情况下可以不设初次沉淀池,所以占地面积可缩小1/3-1/2,基建投资节省20%-40%。
(3)耐冲击负荷 SBR充水时可作为均化池,对水质、水量的变化具有调节作用。在采用长时间进水和每周期换水体积很小的运行模式时,SBR可以模拟完全混合式流态,对进水有稀释作用,这也是SBR耐冲击负荷的一个原因。
(4)出水水质好 主要原因是:第一,SBR系统可随时调整运行周期和反应曝气时间等的长短,使处理水达标后排放;第二,沉淀是静止条件下进行的,没有进出水的干扰,泥水分离效果好,可避免短路、异重流的影响;第三,可根据泥水分离情况的好坏控制沉淀时间,使出水SS最少;第四,SBR不仅可以处理一般有机物,还可以去除氮、磷等营养物,某些难降解物也可得到降解。
(5)可抑制活性污泥丝状菌膨胀:废水进入反应池后,浓度随反应时间而逐渐降低。因此,存在有机物的浓度梯度。这一浓度梯度的存在对于抑制丝状菌膨胀,保持良好污泥性状,具有重要作用。从另一方面看,缺氧、好氧状态并存,能够抑制专性好氧丝状菌的繁殖。研究和工程应用表明,SBR污泥的SVI值多在100左右,能有效地抑制丝状菌污泥膨胀。
(6)脱氮除磷 适当控制运行条件,SBR系统可在不投加任何化学药剂的情况下,同时去除氮、磷等营养物,十分简便。
与A2/O工艺、氧化沟工艺不同的是其脱氮除磷的厌氧、缺氧和好氧不是由空间来划分的,而是用时间来控制的。在同一池体中形成厌氧、缺氧和好氧,完成脱氮除磷过程,而后开始沉淀并通过撇水器出水,完成一个周期。该工艺不需要回流污泥和回流混合液,也不设置专门的二沉池,处理构筑物少,但总的容积利用率较低,一般小于50%,因此一般适用于较小规模的污水处理厂。
SBR由于是变水位静置排水,沉淀效果虽好,但需专门的撇水设备,自控要求高,另外,由于是变水位排水和运行,一方面造成水头的浪费;另一方面如采用微孔曝气方式,水位变化易对曝气器构成损害。
2.CASS法ICEAS法
CASS、ICEAS工艺即连续进水、间歇操作运行转的活性污泥法。与传统SBR法不同之处在于设置了多座池子,尽管单座池子间歇操作运行,但使整过程达到连续进水、连续出水。其进水、反应、沉淀、出水和待机在一座池中完成,常用四座池子组成一组,轮流运转,一池一池的间歇处理。这种工艺,每座池子都需安装曝气设备、用于沉淀的滗水器及控制系统,间歇排水,水头损失大,设备的闲置率较高、利用率低,投资大,要求自动化程度相当高。
目前,国内昆明第三污水处理厂采用了ICEAS工艺,设计规模为15万m3/d,已建成投入运行。
CASS工艺是Goronszy教授在ICEAS的基础上开发出来的,是SBR工艺的一种新的形式。通常CASS一般分为三个反应区:一区为生物选择器,二区为缺氧区,三区为好氧区。生物选择区是设置在CASS前端的小容积区,通常在厌氧或兼氧条件下运行。生物选择器的最基本功能是防止产生污泥膨胀。同时还具有促进磷的进一步释放和强化反硝化的作用。在这个区内难降解大分子物质易发生水解作用,对提高有机物的去除率是有一定的促进作用。主反应区则是去除有机物的主场所。运行过程中,通常将主反应区的曝气强度加以控制,以使反应区内主体溶液中处于好氧状态,主要完成降解有机物过程。
在池的末端设有潜水泵,污泥通过此潜水泵不断地从主曝气区抽送至生物选择器中。CASS生物选择器和缺氧芪的设置和污泥回流的措施,保证了活性污泥不断地在选择器中经历一个高絮体负荷(So/Xo)阶段,从而有利于系统中絮凝性细菌的生长,进一步有效地抑制丝状菌的生长和繁殖。CASS工艺沉淀阶段不进水,保证了污泥沉降无水力干扰,在静止环境中进行,可以进一步保证系统有良好的分离作用。
◆CASS工艺运行工艺
CASS反应池内分为选择区和反应区,CASS反应池的运行操作由进水、反应、沉淀、滗水和待机五个阶段组成。
进水期:污水连续流入反应池内前部的选择区,与从反应池后部的凡庸区不断循环至此的污泥混合,使污泥吸收易溶性基质,并促使絮凝性微生物产生。污水在选择区厌氧状态下停留1小时后,从选择区与反应区隔墙下部的入口以低速流入反应区。连续进水可简化对进水的控制,这样的的分池系统也避免了水力短路。
反应期:污水进入反应区池中发生生化反应,在此阶段可以只混合不曝气,或既混合有曝气,使污水处于是反复的好氧—缺氧状态,反应期的长短一般由进水水质及所要求的处理程度而定。
沉降期:在此阶段反应器内混合液进行固液分离,因该阶段在完全静止情况下进行,表面水力和固体负荷低,沉淀效率高于一般沉淀池的沉淀效率。
排水期:当池水位升到最高水位时,沉淀阶段结束,设置的反应池末端的滗水器开动,将上清液缓缓滗出池外,当池水位降到低水位时停止滗水。
待机期:本处理系统为多池联合运行,在每池滗水后完成了一个运行周期,在实际操作中,滗手所需时间往往小于理论最大时间,故滗水完成后两周期闲置时间就是待机期,该阶段可视污水的水质、水量和处理要求决定其长短甚至取消。在此阶段可以从反应池排除剩余活性污泥。反池池排出的剩余污泥由于泥龄长,已基本稳定。
◆CASS生化反应池
在进水期、反应期达到硝化阶段时,可减少或停止供氧,沉淀期或排水阶段都可以发生反硝化。CASS系统进水初期、高浓度的有机物首先消耗池内溶解氧,反硝化以刚进入的污水中有机物作为电子供体,将池内NO3-N还原为N2逸出水面。在反应后期,达到硝化阶段,污水中含有有机物浓度已大为减少,这时可减少或停止曝气,可以利用内碳源进行反硝化。在沉降期和排水期所发生的反硝化也是利用内碳源作电子供体。
在选择区活性污泥也会吸附污水中有机物并以多聚物形式贮存起来。当反应达到部分硝化后,减少或停止向混合液中供氧,则贮存碳源释放。反硝化菌可以利用释放的贮存碳源进行SBR系统所特有的利用贮存碳源进行反硝化。
反应池曝气时聚磷菌利用有机物氧化放出的能量,大量吸收混合液中的磷,以聚磷酸盐的形式储存于体内,水中的磷转移到污泥里,沉淀时处于缺氧状态,部分聚磷菌尚未将吸收的磷大量释放,即以剩余污泥形式排出系统,从而达到去除水中磷的目的。至滗水是污泥层呈厌氧状,DO和NOx-N的接近零,聚磷菌将体内的聚磷酸盐水解,释放出正磷酸盐和能量,有利于下一阶段充分吸收磷。即微生物在反应池中不断地处于厌氧和好氧交替运行状态,从而实现生物除磷。
CASS处理工艺的特点:
不设二沉池,曝气池兼具二沉池功能所需的机械和工艺设备较少,自控运行管理简单;曝气池容积小于连续式,建设费用和运行费用都较低;SVI值较低,污泥易于沉淀,在一般情况下,不产生污泥膨胀现象;易于维护管理,工艺调整灵活,处理水水质优于连续式;对水质、水量变化的适应性强,运行稳定;处理效果好,BOD5去除效率高,除磷脱氮效果优于传统活性污泥法、氧化沟法和AB法,产泥量少;占地面积少,基建费用低;设备闲置率较高;要求自动控制程度较高。
3.MSBR法
MSBR是80年代后期发展起来的技术,MSBR是连续进水、连续出水的反应器,其实质是AA/O系统后接SBR,因此具有AA/O生物除磷脱氮功能和SBR的一体化控制灵活等优点。
污水进入厌氧池,回流活性污泥在这里进行充分放磷,然后污水进入缺氧池进行反硝化。反硝化后的污水进入好氧池,有机物在这里被好氧菌降解、活性污泥充分吸磷后再进入起沉淀作用的SBR池,澄清后的污水被排放,此时另一边的SBR在1.5Q回流量的条件下进行起反硝化、硝化,或起静置预沉的作用。回流污泥首先进入浓缩区进行浓缩,上清液直接进入好氧池,而浓缩污泥则进入缺氧池,一方面可以进行反硝化,另一方面可消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后的厌氧放磷提供更为有利的条件,在好氧池和缺氧池之间有1.5Q的回流量,以便进行充分的反硝化。
4.UNITANK法
UNITANK工艺又称单池活性污泥法,是比利时西格斯水处理工程公司于80年代末开发的专利(SEGHERS ENGINEERING WATER NV)技术。UNITANK生物处理池是由三个矩形池组成,三个池水力相连通,每个池中均设有供氧设备,可采用鼓风曝气或采用表面曝气,在外边两侧矩形池,设有固定出水堰及剩余污泥排放泵,该池既可作曝气池,又可作沉淀池,中间一只矩形池只作曝气池。进入系统的污水,通过进水闸门控制可分时序分别进入三只矩形池中任意一只池。当左池进水,此时左池与中间池曝气,右池为沉淀池,水从左向右流过,从右池上部的固定堰溢出,经过一定时间后,进水从右池进,左池出,则左池变为沉淀,右池与中间池曝气,这样形成一个周期,与SBR原理接近,它是在同一容器中通过搅拌、曝气完成厌氧、缺氧、好氧过程,因而同样具有除磷脱氮功能。
UNITANK由于基本是定水位运行,连续进水、出水避免了SBR工艺中水位变化带来的不利因素。
UNITANK工艺的特点如下:
(1)结构紧凑,模块化设计;
(2)运行模式灵活,可自控运行;
(3)不需刮泥设备和污泥回流,工艺流程简便;
(4)占地面积少;
(5)投资节省。
但由于UNITANK缺专门的厌氧区,实际操作中很难达到释磷所需求的绝氧状态(无分子态氧和无硝态氧),影响到厌氧段磷的释放,而只有厌氧段磷释放得彻底,好氧段磷的吸附量才越大,进入剩余污泥中的磷也越多,从而达到较高的除磷效果。
日前,澳门凼仔污水厂采用了该工艺,设计规模为7万m3/d,处理效果良好,但该厂不要求脱氮除磷。
5.往复式生化处理法
本工艺借鉴了Unitank、MSBR的成果,兼有Unitank一体化工艺和A2/O工艺的优点,是一种取长补短的组合技术。
该工艺具有如下优点:
(1)池中设有专门的厌氧池,完善了除磷效果,具有A2/O的优点。
(2)本工艺视BOD5负荷的大小,可以A2/O法运行,也可以A2/O法运行,比传统A2/O法更具灵活性。
(3)每一组池中的每一格池体积较大,且为完全混合型,因而耐冲击负荷较强。
(4)具有一体化工艺的优点,占地面积小。
(5)由于占地面积小,相应的征地费、地基处理费用小,又由于矩形壁可以共用,土建费用小,因此投资相对较低。
(6)本工艺流程简洁,不需单独设二沉池,曝气、沉淀合用一池,交替运行。

④ 《城市污水处理厂设计中热点问题剖析》羊寿生、张辰 哪位大侠有财富值帮帮忙啊,O(∩_∩)O谢谢,我急用啊

城市污水处理厂设计中热点问题剖析
羊寿生

⑤ 高分求污水处理厂的资料

污水处理厂是从污染源排出的污(废)水,因含污染物总量或浓度较高,达不到排放标准要求或不适应环境容量要求,从而降低水环境质量和功能目标时,必需经过人工强化处理的场所。一般分为城市集中污水处理厂和各污染源分散污水处理厂,处理后排入水体或城市管道。有时为了回收循环利用废水资源,需要提高处理后出水水质时则需建设污水回用或循环利用污水处理厂。处理厂的处理工艺流程是有各种常用或特殊的水处理方法优化组合而成的,包括各种物理法、化学法和生物法,要求技术先进,经济合理,费用最省。设计时必须贯彻当前国家的各项建设方针和政策。因此,从处理深度上,污水处理厂可能是一级、二级、三级或深度处理工艺。污水处理厂设计包括各种不同处理的构筑物,附属建筑物,管道的平面和高程设计并进行道路、绿化、管道综合、厂区给排水、污泥处置及处理系统管理自动化等设计,以保证污水处理厂达到处理效果稳定,满足设计要求,运行管理方便,技术先进,投资运行费用省等各种要求。

摘要: 本文介绍广州市黄埔开发区污水处理厂的总体情况.

关键词: 污水处理
一.实习目的:

生产实习是学生大学学习很重要的实践环节。实习是每一个大学毕业生必的必修课,它不仅让我们学到了很多在课堂上根本就学不到的知识,还使我们开阔了视野,增长了见识,为我们以后更好把所学的知识运用到实际工作中打下坚实的基础。通过生产实习使我更深入地接触专业知识,进一步了解环境保护工作的实际,了解环境治理过程中存在的问题和理论和实际相冲突的难点问题,并通过撰写实习报告,使我学会综合应用所学知识,提高分析和解决专业问题的能力。

二.实习具体内容:

(一)西区污水处理厂

实习时间:2004年10月19日――2004年11月29日

1.污水厂概况:

广州经济技术开发区污水处理厂是开发区管委会投资的重点环保工程,总厂位于广州经济技术开发区志诚大道西22号(西基工业区),占地面积7.86万平方米。日处理工业废水和生活污水3万吨,远景规划为9万吨。

广州经济技术开发区污水处理厂总厂于1992年9月破土动工,1994年8月建成投产。自建厂以来,本厂坚持实行全面质量管理,将人的管理作为质量管理的关键,生产运行管理作为质量管理的核心,设备管理作为质量管理的基础,重视好每一环节,保证了污水处理的出水水质全部达到设计要求并优于设计规定的国家二级排放标准。重视和加强技术改造,在节能降耗方面取得了较好的经济效益和社会效益。1999年和2001年被评为全国城市污水处理厂运行管理先进单位和广东省先进单位。本厂是华南理工大学、华南师范大学等高等院校的定点实习基地。

2001年6月,本厂顺利通过ISO14000:1996环境管理体系认证,成为全国首家通过ISO14000环境管理体系认证的城市污水处理厂。

该厂下辖污水处理总厂外围8个提升泵站、广州经济技术开发区东区(出口加工区)污水处理厂、广州经济技术开发区永和经济区(台商投资区)污水处理厂。总厂采用外围泵站提升输水的形式,收集并处理广州经济技术开发区西区的工业废水和生活污水。该厂的主要职能是负责污水泵站、污水处理、污泥处理的安全、正常运行,确保进厂的污水经处理后全部达标排放。总厂的职能部门有厂长室、副厂长室、生产科、技术科、综合科、办公室等。

生产科的主要岗位有泵站运行操作、污水处理操作、污泥处理操作、化验及仓库管理等.

2.处理工艺:

西区总厂采用以叶轮表面曝气为主体的传统活性污泥法工艺,全部使用国产设备。污水处理采用各种方法,将污水中的污染物分离出来或转化为无害的物质,从而使污水得到净化。污水处理方法分类:

(1). 物理处理法。如过滤法、沉淀法。

(2). 物理化学法。如混凝沉淀法。

(3). 生物处理法。利用微生物来吸附、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。活性污泥法是生物处理法的一种。

活性污泥法工艺是应用最广泛的废水好氧生化处理技术,其主要由曝气池、二沉沉淀池、曝气系统以及污泥回流系统等组成。

废水经初次沉淀池后与二次沉淀底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为物质细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才能被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放,分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。

活性污泥反应的影响因素有以下几个方面:

(1). BOD负荷率(F/M),也称为有机负荷率(2). 水温(3). PH值(4). 溶解氧(5). 营养平衡(6).有毒物质

曝气装置:

1. 鼓风曝气装置

(1)微气泡曝气器(2)中气泡曝气器(3)水力剪切型空气曝气器(4)水力冲击式空气曝气器

2. 机械曝气器

(1)竖轴式机械曝气器(2)卧轴式机械曝气器

3. 活性污泥法的主要运行方式

(1)推流式活性污泥法

(2)完全混合活性污泥法

(3)分段曝气活性污泥法

(4)吸附-再生活性污泥法

(5)延时曝气活性污泥法

(6)高负荷活性污泥法

(7)浅层曝气、深水曝气、深井曝气活性污泥法

(8)纯氧曝气活性污泥法

(9)氧化沟工艺

(10)序批活性污泥法

用传统的好氧活性污泥法处理工业废水是一种即经济、净化效果又好的方法,缺点是废水中污染物的浓度会发生变化,特别是一些有抑制作用的污染物对细菌活性有明显的抑制作用。在传统法的基础上,驯化好氧活性污泥,驯化后的活性污泥可以抗拒高浓度污染物的抑制作用,例如用驯化后的混合菌可连续降解有毒有机氯化物,有效地提高了净化效果。另外,传统活性污泥法的的污泥产生量比较大,这也是传统活性污泥法的一个比较大的缺点。

西区总厂的工艺流程示意图如下:

下图是西区总厂鸟瞰效果图:

3.西区总厂设计参数:

◎处理规模:总设计处理规模为9万吨/日,目前首期设计处理规模为3万吨/日。

◎采用的主要工艺:以叶轮表面曝气为主的传统活性污泥法。

◎设计进水水质:COD≤500mg/LSS≤250mg/LBOD5≤200mg/L

◎设计出水水质:COD≤120mg/LSS≤30mg/LBOD5≤30mg/L

本厂执行《广东省地方标准水污染物排放限值》(DB44/26-2001),出水水质标准为

COD≤60mg/LSS≤30mg/LBOD5≤30mg/L

目前实际处理情况(平均日处理水量24000吨,其中70%以上是工业废水。)

项目
进水(mg/L)
出水(mg/L)
处理效率(%)

COD
544
48.1
91.2

BOD5
270
9.8
96.4

SS
278
28.7
89.7

主要构筑物:

序号
构筑物名称
构筑物类型
规格(L×B×H, m)
有效容积(m3)
数量

1
曝气沉砂池
曝气沉砂池
13.5×2.5×3.78
109
1

2
一沉池
辐流式沉淀池
D=20, H=5.65
1104
2

3
曝气池
表面曝气式生化池
12×12×4.5
648
10

4
二沉池
辐流式沉淀池
D=34, H=4.15
3282
2

5
浓缩池
重力浓缩池
D=9, H=8.6
365
2

主要设备

设备名称
型号规格
生产厂家
数量
备注

格栅清污机
XGS1350-1200
唐山清源环保公司
1
栅距10mm,节距100mm

砂水分离器
LSSF-260B
南京蓝深制泵集团
1

一沉池刮泥机
D20
江都给水排水设备制造厂
2
单臂周边传动幅流式刮泥机

一沉池排泥泵
AS55-4CB
南京蓝深制泵集团
2

曝气机
PE150
安徽第一纺织机械厂
10
SIEMENS 变频器无级调速

污泥回流泵
WQ-300-15
南京蓝深制泵集团
4

二沉池刮吸泥机
D34
江都给水排水设备制造厂
2
双臂周边传动幅流式刮吸泥机

带式压滤机
DYL-2000
河南商城环保厂
2
POWTRAN-RICH 变频器无级调整滤带速度

罗茨鼓风机
SSR-100
山东章晃机械工业有限公司
2
SIEMENS 变频器无级调速

剩余污泥泵
AS75-4CB
南京蓝深制泵集团
2

滤带冲洗泵
IS65-40-250
湖北石首水泵厂
2

污泥输送泵
80WJ4012
上海利工泵业有限公司
2
化工耐腐蚀泵,SIEMENS 变频器无级调速

加药计量泵
JD
天津市通用机械厂
2

空气压缩机
V-0.3/10
广州天河华侨企业公司华通压缩机厂
1
移动式空气压缩机

二氧化氯消毒器
HT908-500
深圳欧泰华有限公司
1

主要化验项目:

化学需氧量COD
生化需氧量BOD5
曝气池混合液MLSS
回流污泥MLSS
悬浮物SS

PH值
总氮TN
30分钟沉降比SV
污泥指数SVI
氨氮NH3-N

总磷TP
磷酸盐PO43--P
含水率
有机物
氯化物

(二)东区污水处理厂概况:

参观时间:2004年11月28日上午

1.厂区概况 :

东区污水处理厂位于广州经济技术开发区东区(出口加工区)宏光路,是广州经济技术开发区管理委员会利用奥地利的国际货款兴建的。一期设计处理规模为2.6万吨/日,处理东区的工业及生活污水,采用SBR工艺,基本上都采用进口设备,污水以自流方式进厂。

2.处理工艺:

序批式活性污泥法或间隙式活性污泥法,简称为SBR工艺,是近十几年来活性污泥处理系统中较为引人注目的一种废水处理工艺,按字面的解释就是按程序、一批一批地生化处理污水。

SBR是现行的活性污泥法的一个变型,它的反应机制以及污染物质的去除机制和传统活性污泥法基本相同,仅运行操作不一样。

SBR操作模式由进水、反应、沉淀、出水和待机等5个基本过程组成。从污水流入开始到待机时间结束算做一个周期。在一个周期内,一切过程都在一个设有曝气或搅拌装置的反应池内依次进行,这种操作周期周而复始地反复进行,以达到不断进行污水处理的目的。

进水工序:进水工序是反应池接纳污水的过程。

反应工序:当废水注入达到预定容积后,进行曝气或搅拌,以达到反应目的(去除BOD、硝化、脱氮脱磷)。

沉淀工序:停止曝气和搅拌,活性污泥绒粒进行重力沉淀和上清液分离。

排水工序:排出活性污泥沉淀后的上清液,作为处理后的出水,一直排放到最低水位。反应池底部沉降的活性污泥大部分作为下个处理周期的回流污泥使用,过剩的剩余污泥引出排放。

待机工序:沉淀之后到下个周期开始的期间。

SBR工艺的设备和装置

(1). 滗水器:电动机械摇臂式、套筒式、虹吸式、旋转式、浮筒式等。

(2). 曝气装置:机械曝气、鼓风曝气。

(3). 阀门、排泥系统。

(4). 自动控制系统。

SBR法的特点有以下几点:

(1). SBR法将生化处理过程的进水、曝气、沉淀、排水以及闲置再生等几个步骤都集中在一个设备或池子里进行了,因此处理的基本工艺是调节池→SBR,流程变得非常简短,设备也少,便于操作和维修。

(2). 在SBR里,除了有曝气进行的好氧生化之外,还有一个较长时段的好氧微生物不承受有机负荷的再生期,以及厌氧微生物的水解过程。所以SBR法的沉降性能好,出水清澈。而因此就可以维持SBR的高污泥浓度,从而获得高负荷,并具有超常的处理效率和处理难生化污水的能力。

(3). 在SBR的运行周期内,进水、曝气、沉降、排水、闲置等程序的时间,完全可以根据水质、水量的实际情况进行调整,因此适应性强,方便调试和正常操作。

(4). 由于污泥有一个再生过程,又可以保持高浓度,所以污泥不仅性状良好,易于脱水干化,而且产泥率低。

(5). SBR不仅生物量大,而且生物相当丰富,因此具有较好的脱氮能力。

(6). 由于流程短、设备少,取消了二沉池、刮泥机及连接管路等,因此基建投资省

3.处理工艺流程图:

(三) 永和污水处理厂概况:

1.厂区概况:

永和污水处理厂位于广州经济技术开发区永和经济区(台商投资区)永顺大道旁,一期工程污水处理量为2000吨/日,主要采用以生物接触氧化法工艺(生物膜法)为核心的一体化污水处理装置,辅以粗细格栅机、沉砂池等预处理设施,处理永和经济区以工业废水为主的污水。目前正在建设二期工程,二期工程采用柔性生化污水处理系统,日污水处理量为6000吨。

2.处理工艺

生物膜法和活性污泥法一样,同属于好氧生物处理方法。但活性污泥法是依靠曝气池中悬浮流动着的活性污泥来去除有机物的,而生物膜法是依靠固着于固体介质表面的微生物来去除有机物的,因而这种方法亦称为生物过滤法。

生物膜法具有以下几个特点:固着于固体表面上的微生物对废水水质、水量的变化有较强的适应性;和活性污泥法相比,管理较方便;由于微生物固着于固体介质表面,即使增殖速度较慢的微生物也能生息,从而构成稳定的生态系;高营养级的微生物越多,污泥量自然就越少。一般认为,生物过滤法比活性污泥法的剩余污泥量要少。

当然,由于固着于固体介质表面的微生物量较难控制,因而在运转操作上伸缩性差;又由于滤料表面积小,BOD容积负荷有限,因而空间效果差;加之采用自然通风供养,在生物膜内层往往形成厌氧层,从而缩小了具有净化功能的有效容积。然而由于新工艺新滤料的研制成功,生物膜法作为良好的好氧生物处理技术仍被广泛地应用着。

生物膜法分为以下三类:

(1). 润壁型生物膜法。废水和空气沿固定的或转动的接触介质表面的生物膜流过,如生物滤池和生物转盘等。

(2). 浸没型生物膜法。接触滤料固定在曝气池内,完全浸没在水中,采用鼓风曝气,如接触氧化法。

(3). 流动床型生物膜法。使附着有生物膜的活性炭、砂等小粒径接触介质悬浮流动于曝气池中。

3.处理工艺流程:

下图是永和污水处理厂一期工程的工艺流程示意图:

永和污水处理厂设计进、出水水质与实际情况的对照。

项目
设计进水(mg/L)
设计出水(mg/L)
实际进水范围

BOD5
180
30
15~40

COD
300
80
60~140

SS
250
70
50~150

油脂
30
10
未测

三.实习总结:

此次在黄埔开发区污水处理厂的实习,使我在学生阶段能够最大程度深入学习活性污泥法的处理工艺.活性污泥法是目前处理城市和工业污水普遍采用的好氧生化处理技术.其工艺流程较为简单,处理成本低,而处理效果好,BOD/COD去除率高,因而能得到广泛的青睐.随着工艺技术的提高,序批式活性污泥法(SBR)得到越来越多的重视和应用.SBR法电气化和自动化要求程度高, 并具有超常的处理效率和处理难生化污水的能力,极大地节约劳力和用地面积,是较为先进且前景较好的处理工艺.

⑥ 广东有几个污水处理厂

广东省东莞市市区污水处理厂
东莞市东江水务有限公司市区污水处理厂(含市区粪便无害化处理站)
位于南城区石鼓村王洲,占地面积16.21万平方米,日处理生活污水能力为20万吨、清掏的粪便150吨,是东莞市目前采用二级处理最大的一间生活污水处理厂和唯一的一座粪便无害化处理站。该厂厂区外管辖有新基污水泵站、珊洲河污水泵站两座。是一个全资的国有企业。污水、粪便收集范围:莞城区、南城区、东城区的全部、万江区南面组团的生活污水和这四区的清掏粪便。服务面积62.95平方公里,服务范围现状人口49.96万人。
该厂概算总投资 6 亿元,其中厂区投资 2 亿元,管网投资 4 亿元。厂区、管网全部由东莞市财政投资兴建 , 分两期建成,其中一期于 2001 年 9 月动工, 2002 年 6 月投入试运行,采用厌氧—氧化沟工艺( A/O 工艺) , 处理能力为 10 万吨 / 日;二期于 2003 年 9 月动工, 2004 年 8 月 28 日 投入试运行,采用缺氧、厌氧—氧化沟工艺( A2/O 工艺),处理能力为 10 万吨 / 日。截污主干管总长度为 14.77Km ,管径为 D 1400mm 至 D 2600mm ;支干管总长度为 4.9Km ,管径为 D 300mm 至 D 1600mm 。
该厂处理后的污水,经市环保监测站抽样检验,符合污水综合排放国家一级( GB18918-2002 ) B 标准和广东省( DB4426 - 2001 )一级标准。

法定代表人/负责人:王建卫
电话号码(传真):2982617
邮政编码:523000
企业所在地址:南城区石鼓村王洲
公司成立时间:2002-12-31

广州市大坦沙污水处理厂

广州市大坦沙污水处理厂为该市第一座大型城市污水处理厂,处理规模15万m3/d,占地14 ha,总投资1.4亿元,服务范围1289 ha,服务人口约60万人。该工程由广州市市政工程设计研究院和中国市政工程华北设计研究院联合设计。获广州市环保科研设计一等奖、广东省优秀设计二等奖和国家建设部优秀设计三等奖。
污水处理工艺采用生物除磷脱氮活性污泥法(简称A2/O),于1989年11月底全面建成投产,经多年的运行证实,处理后出水完全达到设计要求,使该厂附近的珠江河段水质明显好转,取得了显著的社会效益和环境效益。
工程内容包括:(1)污水泵站,澳口泵站污水泵房内设6台水泵(5用1备),总抽升能力9.6万m3/d,将驷马涌区污水抽送至大坦沙污水处理厂处理;荔湾泵站内设4台水泵(3用1备),总抽升能力5.76万m3/d,将荔湾涌的污水抽送至大坦沙污水处理厂处理。(2)污水处理厂设在广州市西郊大坦沙小岛上,占地200亩,荔湾泵站和澳口泵站抽升的污水经压力管道过河送到厂内。
厂区污水处理分为初级处理和二级处理。初级处理由沉砂池、初沉池组成,去除较大颗粒的有机物;二级处理采用生物除磷脱氮活性污泥法,由生物反应池、二沉池和接触消毒池组成,在厌氧、缺氧、好氧的环境下,通过不同种类微生物的生化作用,达到去除污水中有机物及氮和磷的目的。污泥处理厂区预留了污泥消化的用地,但考虑到广州城市污水中有机物质含量低的特点,设计采用了生污泥直接脱水的工艺,由污泥浓缩池、污泥贮池及污泥脱水机房组成,可将污水处理过程中产生的污泥经浓缩和机械脱水后,使污泥含水率从98%左右降至75%~80%,成为干污泥饼后运至卫生填埋场,与垃圾一起作卫生填埋处理。
工程特点:(1)根据珠江广州河段西航道(离西村水厂水源较近)水质中氮、磷污染严重的特点,在国内首次选用了国际上先进的除磷脱氮工艺。(2)设计中选用国内外先进的设备,如微孔曝气器、潜水泵、水下搅拌器及污泥脱水机等使处理能耗降低。(3)在复杂的溶洞石灰岩地区建造大型池体,建成后没有出现渗漏和裂缝。(4)自动化程度较高,设备按程序控制,由中心控制室通过计算机记录和控制,监测内容包括pH、SS、MLSS、温度、泥位、溶解氧、氧化还原电位等。(5)处理厂总平面布置合理紧凑、绿化程度高,环境优雅,深受国内外同行的好评。

区 号:020
电 话:020-81754527
地 址:双桥路坦尾大街

广州西朗污水处理有限公司

西朗污水处理厂(一期)占地113033m2,建筑面积17058m2,设计处理能力20万m3/d,采用改良A2O工艺,具有较好的脱磷除氮功能。项目投入运营,将有效地收集和处理芳村区全部污水及海珠区部分污水,改善珠江广州河段的水体,保护广州市西村水厂、石门水厂、小洲水厂和石溪水厂取水点的水质,优化投资环境,从而提高广州人民的生活质量,产生良好的环境效益、社会效益和经济效益。

广州市沥滘污水处理厂

厂区分期建设,一期工程于1991年立项,1999年正式投产,设计处理规模为每天22万吨;二期工程于2002年4月动工,2003年10月试通水运行,设计处理能力为每天22万吨;猎德三期于2004年动工,2006年9月26日实现了通水试运行,设计处理能力为每天20万吨。我厂一期工程采用AB两段吸附降解生物处理工艺,二期工程采用组合交替活性污泥法处理工艺,三期工程设计采用改良A2/O工艺(缺氧/厌氧/好氧活性污泥法)。厂外共设有东濠涌、西濠涌、天河南路、林和东路4座污水提升泵站,其中东濠涌泵站还承担了中心城区防洪排涝的任务。厂内主要的构筑物包括:提升泵房、沉砂池、生物反应池、二沉池、浓缩池、脱水机房、接触池等。污水由厂外泵站输送到厂区后,经过厂内提升泵房的粗细格栅去除污水中较大的悬浮物和漂浮物;再经离心式潜水泵提升进入厂区高架渠箱流入沉砂池;经沉砂处理后的污水分别进入一、二期生物反应池处理,再经过二次沉淀、消毒后达标排放。
目前,该厂已经建立起“质量、环境、职业健康安全”三位一体的科学管理体系,规范生产和安全等各方面工作,确保了处理水量任务的完成和出水水质的稳定达标排放。自从猎德污水厂投产后,珠江广州河段的水质得到了明显改善。截至2006年12月5日统计数据显示,今年猎德厂一、二期污水处理总量已经达到1.6512亿吨,提前25天圆满完成全年1.64477亿吨的生产任务,处理出水全部达到或优于国家一级B标准。

广州市猎德污水处理厂

广州市猎德污水处理厂是广州市污水治理规划中的第二座大型现代化城市污水处理厂,位于广州市天河区猎德村以东、华南大桥珠江北岸,占地面积39万平方米,主要负责收集处理珠江前航道以北的大部分市中心区,包括西濠涌、沿江自排系统、东濠涌、二沙岛及天河区的部分污水,服务面积为150平方公里,服务人口约215万人。
厂区分期建设,一期工程于1991年立项,1999年正式投产,设计处理规模为每天22万吨;二期工程于2002年4月动工,2003年10月试通水运行,设计处理能力为每天22万吨;猎德三期于2004年动工,2006年9月26日实现了通水试运行,设计处理能力为每天20万吨。我厂一期工程采用AB两段吸附降解生物处理工艺,二期工程采用组合交替活性污泥法处理工艺,三期工程设计采用改良A2/O工艺(缺氧/厌氧/好氧活性污泥法)。厂外共设有东濠涌、西濠涌、天河南路、林和东路4座污水提升泵站,其中东濠涌泵站还承担了中心城区防洪排涝的任务。厂内主要的构筑物包括:提升泵房、沉砂池、生物反应池、二沉池、浓缩池、脱水机房、接触池等。污水由厂外泵站输送到厂区后,经过厂内提升泵房的粗细格栅去除污水中较大的悬浮物和漂浮物;再经离心式潜水泵提升进入厂区高架渠箱流入沉砂池;经沉砂处理后的污水分别进入一、二期生物反应池处理,再经过二次沉淀、消毒后达标排放。
• 公司法人:周曼琪
• 员工人数:150 人
• 联系地址:广东省广州市天河区临江大道501号
• 邮政编码:510655
• 联系电话:020-38890399
• 公司传真:38890803

•广州市番禺区前锋净水厂

前锋净水厂位于番禺区石基镇前锋村,总占地面积300亩,规划污水处理规模为40吨/日,分四期进行建设,第一期10万吨/日,第二期10万吨/日,另预留第三、四期各10万吨/日处理量的建设用地。该项目经广州市计划委员会批准立项,2001年3月开工建设。一期工程概算总投资4.2亿,其中厂区工程2亿元(利用国债0.82亿元),配套截污工程2.2亿元。
厂区工程由厂内提升泵房、细格栅及沉砂池、组合交替式生物处理池(UNITANK反应池)、接触消毒池、污泥储泥池、污水浓缩胶水机房、鼓风机房、变电房、综合办公楼等组成。厂外截污工程盖市桥中心城区、石基和沙湾镇中心区,截污干管长52公里,截污闸8座,提升泵站4座。
本项目引进比利时史格斯公司的UNITANK?专利技术,采用组合交替式A/O活性污泥处理工艺,具有除磷脱氨氮功能,也可对排放污水进行消毒处理。出水水质执行国家《综合污水排放标准》和《广州市污水排放标准》的一级排放标准,主要排放指标为(单位:mg/L):BOD5≤20、CODcr≤60、SS≤20、NH4-N≤10。
工程设计由广州市市政设计研究院承担;工程监理、设备采购与安装、土建施工采用公开招标形式选定承包单位,湖北省中南市政工程监理公司中标负责土建施工和设备安装监理工作,广东省四建、广州市四建、广州市建筑集团等单位承担土建工程施工,深圳中兴新设备通讯公司和中国通用机械总公司总包设备采购安装和调试工作。主要的处理设备和关键技术由国外引进,一般设备由国内制造。
项目营运管理按社会化、市场化、专业化的模式进行,以国际公开招标的形式靠选择营运商,吸引了法国威望迪水务公司等国内外单位参与竞投,最后由深圳水务(集团)有限公司中标负责厂区和管网的营运与维护工作,承包期五年。
目前,第一期10万吨/日处理量的土建和设备安装工程已基本完成,即将进行设备调试和试运行。预计2004年第二季度全面投产后,市桥中心城区及石基、石楼、沙湾镇中心区的大部分生活污水可以得到处理,区内环境质量将会明显改善。

法人:梁柱
主营:污水净化
电话:84611726
地址:广东省广州市番禺区石基镇前锋村
经济类型:国有企业
生产产值:300-500万
人员数量:22人
开业年份:1999

广州经济技术开发区污水处理厂东区厂

广州经济技术开发区东区污水处理厂(现改名为东区水质净化厂)工程为利用奥地利政府贷款建设的工程,工程概算总投资8200万元,实际工程投资约7000万元,其中利用奥地利政府贷款490美元。该工程于2002年2月破土动工,2003年5月竣工验收,曾获广州市安全文明施工样板工地的称号。
一、 服务范围及出水标准
东区污水处理厂的服务范围为广州经济技术开发区东区,服务面积共计7平方公里。东区污水处理厂占地面积较小,厂址位于东区宏光路以南,南岗河以西的一块三角地块上,总占地面积约3.5万平方米,一期工程占地面积1.6万平方米。
目前东区的排水体制为分流制,雨水与污水各自成系统,分别排放。污水来源主要有区内电子、食品、钢铁、汽车零配件制造企业排放的生产废水及生活区居民排放的生活污水。东区污水处理厂设计处理能力为9万M3/日,其中一期的设计处理量为2.5万M3/日,执行国家《污水综合排放标准》(GB8978-1996)一级排放标准。设计进水及出水水质为:

主要污染物 设计进水水质 设计出水水质
BOD5 200mg/l ≤20 mg/l
CODcr 400 mg/l ≤60 mg/l
SS 250 mg/l ≤20 mg/l
NH3-N 25 mg/l ≤15 mg/l
PO43- 5 mg/l ≤0.5 mg/l

二、处理工艺及流程
针对东区污水处理厂的具体情况,根据“技术先进、经济合理、高效节能、简便实用、节省占地”的原则,确定了东区污水处理厂处理工艺为间歇式活性污泥法。
间歇式活性污泥法工艺的机理是将传统活性污泥法中不同池子中产生不同生物条件,使污水在不同空间完成其生化处理阶段转变为在同一生物池中通过在不同时间创造不同的生物环境,使污水在同一空间的不同时间完成其生化处理过程。
间歇式活性污泥法通过进水—曝气—沉淀—撇水四个阶段形成一个周期,时间约为4~6个小时,污水在反复的厌氧、缺氧、好氧环境中完成脱磷脱氮。
本工艺生物池为曝气头曝气,可大大提高供氧效率,并可增加生物池水深,减少了占地面积。同时由于生物池为完全混合式生物池,可以省掉一沉池。通常其他工艺中的二沉池、回流泵房在此工艺中也被省掉,因此其处理工艺流程大大缩减。
三、主要经济技术指标
序 号 项 目 单 位 指 标
1 年总成本费用 万元 1036.33
2 年经营成本 万元 575.66
3 单位生产成本 元/m3 1.14
4 单位经营成本 元/m3 0.63
5 年电费 万元 176.34
6 单位水量电耗 Kw.h/m3 0.19
7 单位水量投资 元/m3 2800
8 工程总投资 万元 7000
9 其中:外贷 万美元 490
10 国内配套资金 万元 2800

四、工程特点
1、设备先进。东区污水处理厂是利用奥地利政府贷款建设的项目。厂内的主要设备都是通过国际招标的方式挑选出来的在国际上有名的品牌和最先进的型号。设备的供应产商包括Siemens、ABB、Netzsch、Andritz、ProMinent、KSB、AGRE、Spirac、Heideco、Huber、Burbach、Technofluid、Nopol、E+H、COMPAQ、Hach、WTW、Sartorius、Zeiss等。
2、自动化程度高。自控系统采用了最先进的profibus总线控制,远程三级控制。实现了进出水浊度、进出水PH、溶解氧、液位、流量等的在线监测,配备了进出水口24小时自动取样器。中控室选用了基于Microsoft Windows的32位面向对象的图形人机界面的应用软件开发软件Wonderware InTouch 7.0以及全自动的记录系统ACRON,能通过人机界面选择对工艺生产线进行半自动或全自动控制,通过在计算机修改工艺参数的设置值进行工艺调度,保证出水水质。厂界及办公室范围设置了红外对射双监系统,生产车间设置了摄像头监测,在中控室中就能随时观察生产线的情况,一改污水处理厂需要大量工人的传统,大大降低了运行成本。而且,全自动的记录系统提供生产状况的可追溯性,为统计进水水水质数据,总结运行经验提供了有利条件。
3、封闭式生产车间。东区污水处理厂为全国最早采用钢结构上盖的污水处理厂,不仅将对周围环境的影响降到了最低,也使污水厂的外观给人于现代化工厂的感觉。

韶关市第一污水处理厂

此项目是广东省蓝天碧水工程之一。项目严格按照《中华人民共和国招标投标法》的程序进行的,经专家评委评审决定市阀门机械有限公司为中标单位,总承包该项目的勘察、设计、土建施工、设备安装、试运行、人员培训等。工程项目占地约2公顷,控制用地约7公顷,建设规模首期为每日处理污水1.5万立方米,二期建设规模增至每日处理污水3万立方米,由广州市市政设计研究院设计。污水处理采用先进、成熟的生物化学(活性污泥法)工艺,该工程的建设对保护和改善市区西河二水厂、十里亭水厂和五里亭水厂饮用水水源,提高市区环境质量,优化投资环境具有深远的意义。

深圳市水务集团有限公司滨河污水处理厂

该工程位于广东省深圳市福田区滨河大道二号大院滨河污水处理厂内,占地面积13.87公顷,服务面积为罗湖区西部和福田区东部约27.5平方公里,服务人口约54万人,日处理污水30万吨。
工程总投资4.5亿元。
深圳市滨河污水处理厂第二期工程活性污泥法二级污水处理系统于1987年竣工。该系统主要处理深圳市罗湖区、福田区的城市生活污水,日处理水量2.5万m3。经过十几年的运行,我们根据现有设备的特点,逐渐摸索出一套适合深圳市污水水质特点的污水处理工艺方法,并在总结实践经验的基础上,结合污水处理工艺最新发展趋势,积极探索进行旧设备与构筑物改造的最佳途径。
1 设计工艺流程
活性污泥工艺的设计参数:
进水水质:BOD5=200mg/L,SS=240mg/L;
出水要求,达到国家二级处理排放要求,即pH=6.5-8.5, SS小于30 mg/L, BOD5小于30mg/L, CODCr小于120mg/L
工艺流程见图1。

图1 滨河污水处理厂工艺流程图
(1) 粗格栅 机械格栅的栅条间距采用20mm。
(2) 曝气沉砂池 曝气沉砂池的前端设置细格栅,格栅的间距为10mm。沉砂池原设计成多尔沉砂池形式,由砂泵将水砂混合液吸入分离槽进行水砂分离,后由于实际运行效果不理想,按照平流池的形式进行了改建,采用机械刮砂机进行除砂。
(3) 初级沉淀池 初沉池是2座25m直径的圆形辐流式沉淀池,池边水深3.14m,沉淀时间1.5h。设计去除悬浮固体60%,去除BOD5负荷25%~30%。
(4) 曝气池 曝气池分为2组,每组4廊道,两组池并联使用。总有效容积8350m3,水深6m。水力停留时间8h,污泥负荷0.2kgBOD5/(kgMLSS•d)。
(5) 二级沉淀池 二沉池是2座直径30m的圆形辐流式沉淀池,池边水深3.97m,沉淀时间2.5h。
(6) 污泥回流泵站 二沉池活性污泥回流采用3台700mm螺旋回流泵,回流率85%,无备用。
(7) 脱水机 污泥脱水采用带式脱水机,性能稳定,工作效率高,但卫生条件较差。
2 净化机理和工艺特点
普通活性污泥法作为传统的污水生物处理工艺,是处理效率较高的污水处理方式。活性污泥中的微生物主要有细菌、原生动物和藻类,其中细菌主要又以菌胶团和丝状菌状态存在。在传统活性污泥法中,培养一定浓度的、具有良好沉降性能的活性污泥,是运转的关键,也是保证出水水质的关键。
3 进水水质
深圳滨河污水处理厂的进水水质波动比较大,进水BOD5浓度最高450 mg/L,最低80 mg/L,进水的BOD5浓度在100mg/L~200mg/L之间的频率为54%,进水的BOD5浓度在200mg/L~300mg/L之间的频率为26.5%,进水的BOD5大于300mg/L的频率约10%。平均进水BOD5浓度190mg/L。进水SS浓度在120mg/L~240mg/L之间的频率为76%,进水SS浓度大于240mg/L的频率为24%,平均进水SS浓度146mg/L。最高进水CODCr浓度2000mg/L,最低进水CODCr浓度200 mg/L,平均进水CODCr浓度大于380 mg/L。进水悬浮物主要成分是污泥。

4 运行情况
深圳市属于亚热带海洋性气候,年平均气温23℃,夏季最高月平均气温是28℃,冬季最低月平均气温是15℃,四季温差较小,城市污水的温度适宜微生物的繁殖。
滨河污水处理厂进水以生活污水为主,只有少量的工业废水,进水BOD5/ CODCr大于0.3,污水的生化过程较易进行。进水CODCr的异常变化能够反映出进水BOD5的异常变化。
滨河污水处理厂进水中经常有漂浮物、淤泥、建筑砂石。原设计使用的多尔沉砂池配砂泵的运行方式不合适,砂泵经常堵塞,多尔沉砂池的停留时间过长,沉淀物含泥量过大,原设计使用的砂水分离器不能很好地脱水,造成了生产运行的困难。
后根据实际进水水质状况,将多尔沉砂池按平流池的原理进行了改造,降低了出水堰板高度,增设了曝气管,改用简单高效的机械刮砂方式,解决了砂水分离的困难,减少了污泥的沉降。
经过初级沉淀,SS的去除率达到56.2%,BOD5的去除率达到45.8%,CODCr除率达到51.2%。初沉池出水中SS浓度平均为64mg/L,BOD5浓度平均为103mg/L,CODCr浓度平均为185.3mg/L。因为进水中悬浮污泥的含量大,所以初级沉淀对悬浮物有机物的去除率比设计值高。由于部分进水水质超过设计标准,在初沉池出水中SS浓度超过设计值的频率为8.4%;出水BOD5的浓度超过设计值的频率为13.4%,形成对曝气池的冲击负荷。
曝气池中活性污泥的性质直接影响到出水水质,活性污泥的组成既有菌胶团又有丝状菌。活性污泥的生长受营养物质、水温、pH值等因素决定。活性污泥的浓度是影响污泥负荷的内在因素。
曝气池污泥负荷N(kgBOD5/(kg MLSS•d))与污泥浓度MLSS的关系式:
N=QLa/(XV)
式中Q--污水流量,m3/d;
La--曝气池进水BOD5浓度,mg/L;
X--曝气池混合液污泥浓度MLSS,mg/L;
V--曝气池体积,m3。
滨河污水处理厂曝气池活性污泥浓度维持在1000mg/L左右,曝气池的污泥负荷平均 为0.31kg BOD5/(kg MLSS•d),大于设计值。
活性污泥的沉降性能是影响二沉池出水水质的重要因素,将活性污泥的沉降比控制在合理的水平取决于进水水质如pH、营养物质、水温以及二沉池设计参数等因素。监测结果表明,曝气池的污泥沉降比SV小于40%时,活性污泥在二沉池中沉降良好。曝气池活性污泥浓度在900mg/L以下时,丝状菌有机会大量繁殖。丝状菌分解有机物的能力较强,丝状菌的增加对有机物的降解作用甚至强于菌胶团占优势时的活性污泥,但泥水分离能力较差,对二沉池出水SS的影响很大。曝气池活性污泥浓度低于800mg/L时,丝状菌会引起严重的污泥膨胀。在实际生产中,以污泥沉降比40%为参考值,结合微生物镜检,可以预防污泥膨胀。低浓度运行的活性污泥法比高浓度运行时容易引起污泥膨胀。
5 出水水质
深圳滨河污水处理厂活性污泥系统对有机物、悬浮物能够高效率去除,BOD5、SS的去除率可达到90%以上,出水BOD5、SS满足国家二级处理排放标准,低于30mg/L;CODCr的去除率可达到80%以上,出水CODCr低于120 mg/L,出水CODCr平均为32.88 mg/L,出水CODCr浓度在60mg/L以下的频率为89.2%。
6 运行管理
传统活性污泥法污水处理系统运行过程中,由于进水水质的经常性变化,波动较大,为维持曝气池稳定运行,随着进水水质的变化及时调整运行参数是维持运行稳定的关键。通过长期的运行实践和对水质分析结果的规律性研究,我们得到以下结论:
当出水BOD5、SS大于20mg/L或曝气池活性污泥沉降比大于40%时,运行工段需要及时调整污泥回流比,以维持活性污泥的正常性能。
出水CODCr与出水SS、BOD5具有趋势相关性,而进行CODCr和SS的测量比较迅速,进行BOD5的测量有滞后性。当出水CODCr大于60mg/L时,适当调整污泥回流比、增加曝气池活性污泥浓度,保持有机物去除效果,维持稳定运行。
7 总结
传统活性污泥法是一种低成本高效能的污水处理方式,能够高效去除有机物,停留时间长的活性污泥法还具有硝化功能,但传统活性污泥法在运行中容易引起污泥膨胀,低活性污泥浓度运行时抗冲击负荷能力差。在珠江三角洲地区,将传统活性污泥法改造成A/O法或运用氧化沟进行污水处理,运行更稳定,增强了抗冲击负荷和抗污泥膨胀的能力,也容易实现自动化管理。
• 联系地址:广东省深圳市滨河大道2号大院610房
• 邮政编码:518031

深圳市水务集团有限公司南山污水处理厂
南山污水处理厂隶属于市排水管理处,位于南头半鸟月亮湾畔,是深圳市污水排海工程的重要组成部分;由深圳市给排水工程建设指挥部负责建设,南昌有色冶金设计研究设计院设计,深圳市市政工程公司等单位施工;于1988年3月动工,1989年11月竣工投产,一期工程规模5万,投资4500万元,其服务范围为南头、南油以及蛇口的部分地区,服务人口为8.5万人;二期工程于1989年12月动工,1997年6月25日海洋放流管及厂区污泥部分建成并投入使用。全部工程完工后服务人口为121.68万,污水处理为73.6万m3/d;占地面积15.416公顷。
深圳市污水排海工程是将福田区皇岗路以西的城市污水通过截流管(渠)系统输送到南山污水处理厂,经一级处理后,再用水泵加压送至妈湾,通过工作井进入海洋放流管,经扩散器均匀地将污水排入珠江口深海,利用海水巨大的稀释自净能力来满足环保要求。此工程包括从皇岗路到排海口的截污主管(渠),长32.04km,滨河、新洲、凤塘、后海、前海、登良等六座污水提出升泵站;南山污水处理厂一座;海洋放流管一根,长1609m。深圳市污水排海工程设计服务人口为121.68万人(其中常、暂住人口101.4万,流动人口20.28万).污水总排放量为73.6m3/日(排放定额按常、暂住人口650升/人.日,流动人口360/升.日,另加妈湾附近开发区0.4m3/日。
南山污水处理厂处理工艺
污水经总提升泵房格栅截污,并由潜水泵提升经细格栅进入曝气沉砂池,污

地址:深圳市南山区月亮湾大道16号
电话:0755-26489894

⑦ 婊ㄥ窞姹℃按澶勭悊鍘傛槸鍥戒紒鍚

鏄銆傛牴鎹鏌ヨ㈠ぉ鐪兼煡瀹樼綉鏄剧ず锛屾花宸炴薄姘村勭悊鍘傛槸鍥戒紒锛屾花宸炲競鍩庡尯鍗楅儴姹℃按澶勭悊鍘備簬2020骞村缓璁撅紝灞变笢婊ㄥ窞甯傚煄鍖哄崡閮ㄦ薄姘村勭悊鍘傞噰鐢ㄨ緝涓哄厛杩涚殑姹℃按澶勭悊宸ヨ壓锛屽叾璁捐¤勬ā涓0涓囩珛鏂圭背/鏃ワ紝鍏堟湡鏃ュ勭悊瑙勬ā杈惧埌0涓囩珛鏂圭背/鏃ワ紝鐢辨祹鍗楀競甯傛斂宸ョ▼璁捐$爺绌堕櫌锛堥泦鍥锛夋湁闄愯矗浠诲叕鍙歌礋璐h捐★紝椤圭洰鎶曡祫杩150000涓囧厓锛屾花宸炲競鍩庡尯鍗楅儴姹℃按澶勭悊鍘傚強閰嶅楃$綉宸ョ▼PPP椤圭洰宸ョ▼鍦扮偣锛氭花宸炲競婊ㄥ煄鍖恒傚伐绋嬭勬ā锛氭薄姘村勭悊鍘傦紝杩涙按绠$綉锛氱$綉鎬婚暱搴︾害10鍏閲屻傚垎鍒涓猴細2鍙锋薄姘存彁鍗囨车绔欐部绉﹀彴娌虫帓鑷冲崡閮ㄦ薄姘村勭悊鍘傦紱10鍙锋薄姘存彁鍗囨车绔欐部鏂扮珛娌充笢璺鎺掕嚦鍗楅儴姹℃按澶勭悊鍘傘

阅读全文

与深圳滨河污水处理厂规模相关的资料

热点内容
污水管属于排水系统 浏览:251
饮水机接水处怎么更换 浏览:551
制药厂滤芯怎么灭菌 浏览:888
污水泵的编码怎么看 浏览:688
河南含镉废水处理价格如何 浏览:210
有机废水和氟离子水有什么危害 浏览:950
农村污水处理设备需要多少钱 浏览:760
弹簧水滤芯怎么用 浏览:617
口腔门诊污水处理器表 浏览:669
生活污水综合利用方法 浏览:754
饮水机的gallon是什么意思 浏览:756
污水处理市场一顿多少钱 浏览:696
废水理化是什么意思 浏览:916
小区大型饮水机宇欣怎么换 浏览:388
废水泵电磁阀 浏览:102
超滤保养液一般用什么 浏览:919
卡罗拉的汽油滤芯什么情况下要换 浏览:596
含油热解废水来源 浏览:678
给水处理石灰投加点 浏览:565
污水处理厂如何增加水的碱度 浏览:642