導航:首頁 > 耗材問題 > 半透膜管道系統

半透膜管道系統

發布時間:2024-04-16 11:49:54

半透膜作用 什麼是滲透系統 求學霸解答

半透膜可以讓部分分子通過而阻止另一部分分子

Ⅱ 對能量守恆的懷疑(關於半透膜)

lz有個失誤的地方,那就是把溶液的吸力和重力分開來考慮,比較欠妥,所以才會覺得是做往返運動.

其實溶液對水分子的作用力會隨著重力和一點一點滲進中的不同濃度產生的力下降直至到一定高度就停止.

再者下雨那東西可以理解成太陽能,生活中也比較常見---不過汗一個,第二類永動機是什麼我早忘了.不過利用已有的自然之力產生類似於永動機的東西我也不反對.

最後很無聊的問lz,寫科幻小說?嗯嗯,現在似乎不怎麼流行

我沒馬甲就直接修改了.
我覺得你說的意思是因為管內濃度問題導致缸里的水上升到管里,讓後會因為超過重力的平衡導致重力又把它拉回去,當水分子因為慣性被拉過去得太厲害,又會被相對高濃度溶液拉回去...如此做反復運動.

我說的失誤不是說lz沒有考慮最終平衡溶液會高出水面一個高度.第二段不是針對這一點說的.而是說這種思維模式是把兩個力分開來考慮,是高中物理解題思路.而現實過程中是兩個力無時無刻不在相互作用,最終只能表現為水一個緩慢變至0的力拉上去.所以不會是反復運動.那種微不足道的慣性在很容易被各種力所淹沒甚至是分子間的作用力.

我是這個意思
-----------------------------------------------
嗯嗯,恍然大悟.感覺這裝置行.建議把出水的一頭空間改小,效果更明顯.lz可以試試

Ⅲ 微透析技術的微透析系統及其特點

微透析系統裝置主要由微量泵、微透析探頭、收集器、連接管及配套設備組成。
1,微量泵以注射泵為佳,有利於減少恆流泵和蠕動泵的波動, 流速一般為1~5 μl/min。
2,微透析探頭有直線性探頭、環形探頭、同心型探頭等不同的類型(微透析管因實驗對象不同而形狀大小各異);按照探頭的形狀分為穿顱探頭、U型探頭、I型探頭、環形探頭等。目前普遍應用的是同心型探頭,微透析探頭通常是由一管式半透膜與不銹鋼、石英或塑料毛細管構成雙層管道; 長度一般為1~10 cm。半透膜由再生纖維素、聚碳酸酯或聚丙烯腈製成, 載留分子量5~10 KD不等。實際應用需根據具體組織和待測物選擇不同的微透析探頭。
微透析技術最大的優點是可在基本上不幹擾體內正常生命過程的情況下進行在體( in vivo)、實時( real time) 和在線(on line) 取樣, 特別適用於研究生命過程的動態變化。微透析技術的優點是活體取樣、動態觀察、定量分析、采樣量小、組織損傷輕等。該技術的另一大優點是樣品的採集與分析過程既可在位又可離位進行。此外微透析技術的獨到之處是可以單獨取得細胞外液, 因此可對體內神經遞質的釋放量進行動態監測, 具有重要的生物學意義。
微透析技術的缺點就是對取出的樣品進行准確可靠的校正,主要涉及到對探針的回收率的測定。探針回收率是指從灌流液中流出的待測組分與標准濃度之比的百分數。探針回收率是 影響 微透析結果的重要因素, 取決於取樣部位的生物學性質、透析膜的物理性質(材料、孔徑、長度及幾何形狀等)、待測物質的分子量、灌流速度、壓力、生物體本身的健康條件和生物節律等。目前測定回收率的方法主要有以下幾種:
1,外標法
計算被測物質相對濃度的變化時, 可簡單地採用體外回收率法。測定宜在取樣後立即進行, 將探針放入已知濃度的標准溶液中, 用與體內實驗相同的流速灌流探針。達到穩定狀態後收集灌流液並進行檢測。測定濃度與標准溶液濃度之比就是體外回收率。此法雖簡單易行, 但由於被測物質在體外時與體內的環境狀況不同, 檢測結果不能嚴格地等同於實際的回收率。
2,內標法
往灌流液中加入已知濃度且性質與被分析物質相似的另一種物質做內標,內標物不僅在擴散性質上與被分析物一致,而且還要在體內的代謝過程中也盡可能一致,測出透析率即作為被分析物的回收率。由於選擇內標的局限性很大, 限制了此法的應用。
3,反透析法
假設被測物從兩個方向通過半透膜是同等的。在灌流液中加入一定濃度的內標物(Cic) ,在與體內透析相同的條件下操作, 測定透析液中內標物的濃度(Cec) ,體內回收率(Rin ,vivo ) 可用下式計算:Rin vivo = (1 Cec/ Cic) ×100 %本法要求內標物具有生物惰性, 盡可能與被測物相似。

Ⅳ 鍗婇忚啘娓楅忓師鐞

鍗婇忚啘娓楅忓師鐞嗘槸姘村垎瀛愪粠姘村娍楂樼殑緋葷粺閫氳繃鍗婇忚啘鍚戞按鍔誇綆鐨勭郴緇熺Щ鍔ㄧ殑鐜拌薄銆

緇嗚優涓庣粏鑳炰箣闂達紝鎴栫粏鑳炴蹈浜庢憾娑叉垨姘翠腑錛屽彧瑕佸師鐢熻川灞備袱渚ф憾娑叉湁嫻撳害宸錛岄兘浼氬彂鐢熸笚閫忎綔鐢ㄣ傛笚閫忕幇璞″彂鐢熺殑鏉′歡鏈変袱涓錛屽寘鎷鏈夊崐閫忚啘錛屽崐閫忚啘涓や晶鏈夌墿璐ㄧ殑閲忔祿搴﹀樊銆

鐢熺墿鑶滃苟闈炵悊鎯沖崐閫忚啘錛屽畠鏄閫夋嫨閫忔ц啘錛屾棦鍏佽告按鍒嗗瓙閫氳繃涔熷厑璁告煇浜涙憾璐ㄩ氳繃錛屼絾閫氬父浣挎憾鍓傚垎瀛愭瘮婧惰川鍒嗗瓙閫氳繃瑕佸氬緱澶氾紝鍥犳ゅ彲浠ュ彂鐢熸笚閫忎綔鐢ㄣ

鍗婇忚啘鎶鏈錛屾槸鎸囧埄鐢ㄤ竴縐嶇壒孌婄殑鍗婇忚啘灝嗘憾娑查殧寮錛屼嬌涓渚ф憾娑蹭腑鐨勬煇縐嶆憾璐ㄩ忚繃鑶滄垨鑰呮憾鍓傛笚閫忓嚭鏉ワ紝浠庤岃揪鍒版憾璐ㄥ垎紱葷殑鎶鏈銆

Ⅳ 利用U形管做滲透作用實驗(U形管中間用半透膜隔開)時,當管的兩側液面不再變化時,U形管兩側溶液的濃度

半透膜是一種選擇性透過膜,只允許小分子物質,比如鹽離子,通過;大分子物質,比如蛋白、多糖,不能投過半透膜。U形管的液面高度差為這個高度產生的靜水壓等於兩邊溶液的水勢差。

任何物質都具有能量,能量分為束縛能和自由能。束縛能是不能轉化為用於作功的能量,而自由能是在溫度一定的條件下可用於作功的能量,如分子的擴散、布朗運動等都是自由能作功的結果。一種物質每mol的自由能就是該物質的化學勢,是可用來衡量物質反應或轉移所用的能量。1mol水分子所含的化學勢我們簡稱為水勢。在一個體系中,如果單位體積內能夠進行自由運動的水分子越多,這種水溶液的水勢越高;單位體積內能進行自由運動的水分子數越少,該溶液的水勢越低。因此,純水的水勢最高,其它所有水溶液的水勢都低於它。同溫度一樣,水勢的絕對值不易測得,在實際運用中,規定純水的水勢為零,其它溶液的水勢都是跟它相比較得出的數值。水勢的單位是由水勢的化學勢(N.m/mol)除以水的偏摩爾體積(m3/mol)所得的值,即成壓力單位(N/m2)。溶液的水勢與溶液中溶質分子數量和結構有關。同種溶液,溶質分子數量越多,溶液水勢越低,如1mol/L的葡萄糖溶液水勢比2mol/L葡萄糖溶液的水勢低;不同溶質溶液的水勢,水勢除與溶質分子數量有關外,還與溶質分子的結構有關。例如同mol濃度的葡萄糖與蔗糖溶液相比較,由於蔗糖分子是由一分子的果糖和一分子的葡萄糖縮合而成,在分子內部一個分子的蔗糖比一分子的葡萄糖具有更多的親水基團,因此,溶液具有更低的水勢。

水分從水勢高的系統通過半透膜向水勢低的系統移動的現象,稱為滲透作用。在滲透系統中,兩邊的水分子是可以自由通過的,水分向哪邊移動,決定於半透膜兩邊溶液中能夠自由運動的水分子數目多少,即水勢的高低。在單位表面積上,純水能進行自由運動的水分子數比蔗糖溶液的多,因此,在單位時間、單位面積上,水勢高的部分通過半透膜進入水勢低的部分的水分子數,顯然比從水勢低的部分通過半透膜進入水勢高的部分的水分子數要多,一段時間後,水勢低的液面就會明顯的上升,上升的最後高度為這個高度產生的靜水壓等於兩邊溶液的水勢差。液面不會無限制上升。

Ⅵ 再滲透系統中,溶質不能透過半透膜時,實驗剛開始濃度大的一側達到平衡後的濃度為什麼仍大於另一側

你說的是利用U型管進行的滲透作用的實驗吧。
當U型管中兩側的液面不再發生變化時內,一側容高。一側低,而液面高的一側的液體的濃度仍然大於液面低的一側的濃度。
二者是不會相等的,試想一下,如果二者的濃度相等了,那麼這個液面差如何保持呢。

Ⅶ 氨氮高了,高氨氮廢水有哪些處理方法

隨著我國經濟的高速發展,產生了大量高濃度氨氮廢水。氨氮廢水的大量排放,導致水體中氨氮大量富集,引起水體的富營養化與惡化,對水環境造成巨大危害,不僅嚴重影響了人們的正常生活,甚至危害了人們的身體健康,社會影響巨大。因此,國家在氨氮廢水的排放要求方面也制定了越來越嚴格的法規與排放標准。目前,除了合成氨、肉類加工、鋼鐵等12個行業執行相應的國家行業標准(通常一級標准為25mg/L)外,其他均需遵守國家標准GB8978-1996«污水綜合排放標准»。該標准明確1998年後新建單位氨氮最高允許排放濃度為15mg/L。
氨氮廢水的處理方法和工藝有很多種,主要有物化法和生物法。物化法包括吹脫法、離子交換法、折點氯化法、化學沉澱法、膜分離法、高級氧化法、電解法、土壤灌溉法等。生物法包括硝化—反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、SBR、氧化溝等。
1、物化法
1.1 吹脫法
在廢水中氨氮多以銨離子(NH+4)和游離氨(NH3)的狀態存在,兩者保持平衡,平衡關系為:NH3+H2O→NH+4+OH-。這個平衡受pH值影響。當廢水pH值升高時,OH-離子增多,該平衡反應向左移動,有利於NH+4生成游離態的NH3,從而使得游離氨所佔比例增大,游離氨易於從水中逸出。當廢水的pH值升高到11左右時,廢水中的氨氮幾乎全部以NH3的形式存在,再加上曝氣吹脫的物理作用,則可促使NH3更容易從水中逸出,向大氣轉移。此外,該反應為放熱反應,溫度升高,反應方程向左移動,也有利於NH3從水中逸出。依據此原理,可以採用吹脫法來去除廢水中氨氮,吹脫法一般分為空氣吹脫法、水蒸汽吹脫法(汽提法)和超重力吹脫法。
1.1.1 空氣吹脫法
空氣吹脫法去除氨氮的原理是:在鹼性條件下,通過外力將空氣鼓入需要脫氨處理的廢水中,同時在廢水中使鼓入的空氣和廢水充分接觸,廢水中溶解的游離態氨將穿過廢水界面,向外界空氣轉移,從而達到去除氨氮的目的。
目前,空氣吹脫法在高濃度氨氮廢水處理中的應用較多,吹脫速率高,處理費用相對較低,但隨著氨氮濃度的降低,特別是當氨氮質量濃度低於1g/L以下時,吹脫速率顯著降低。氣液比、pH值、氣體流速、溫度、初始濃度等是影響吹脫法處理效果的主要因素。
現有吹脫裝置主要有吹脫池和吹脫塔,由於前者效率低,易受外界環境影響,因此多採用吹脫塔裝置。通常採用逆流操作,塔內裝有一定高度的填料以增加氣—液傳質面積,從而有利於氨氣從廢水中解吸。常用填料有拉西環、聚丙烯鮑爾環、聚丙烯多面空心球等。
空氣吹脫法的優點是:具有穩定的氨氮去除率,工藝操作簡單,氨氮容積負荷大等。缺點是:吹脫過程中易使填料層結垢,使廢水流通不暢,從而影響設備的正常運行;同時,吹脫工藝需要調節廢水pH值,需投加大量鹼,從而使廢水處理成本增高;另外,經空氣吹脫處理後,廢水中還含有少量氨氮,處理後的廢水時常不能達到國家排放標准。因此,吹脫法通常與其他方法聯合使用。
1.1.2 水蒸汽吹脫法(汽提法)
汽提法去除氨氮的原理是:大量蒸汽與廢水接觸,將廢水中游離氨蒸餾出來,以達到去除氨氮的目的。當向廢水中通入水蒸汽時,兩液相在填料表面上逆流接觸進行熱和物質交換,當水溶液的蒸汽壓超過外界的壓力時,廢水就開始沸騰,氨就加速轉為氣相。此外,氣泡表面之間形成自由表面,廢水中的氨不斷向氣泡內蒸發擴散,當氣泡上升到液面上破裂釋放出其中的氨,大量的氣泡擴大了蒸發表面,強化了傳質過程,通入的蒸汽升高了廢水的溫度,從而也提高了一定pH值時被吹脫的分子氨的比率。
汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與空氣吹脫法類似,氨氮去除率高,但汽提法工藝處理成本高,操作條件難控制,消耗動力高等。
1.1.3 超重力吹脫法
空氣吹脫法和水蒸汽吹脫法一般採用填料塔作為吹脫設備,而超重力吹脫法是利用超重力設備———超重機取代傳統的填料塔作為吹脫設備,以空氣為氣提劑,將水中的游離氨解吸到氣相中的氨氮廢水治理方法。
氨氮廢水加鹼調節pH值為10~11後進入超重機處理。廢水經超重機分布器均勻噴灑在填料內緣,在超重力作用下,液體被填料粉碎成液滴,沿填料徑向甩出,經筒壁匯集後從超重機底部流出。同時,空氣經超重機進氣口進入超重機殼體,在一定風壓下,由超重機轉子外腔沿徑向進入內腔。在填料層內,氣液兩相在大的氣液接觸面積的情況下完成氣液接觸,將水中的游離氨吹出。氣體送至除霧器,將夾帶的少量液體分離後,至吸收裝置,脫氨後排空。利用超重機的水力學特性與傳遞特性,可獲得良好的吹脫效果並減少設備投資與運行費用。
與工業上傳統僅使用塔設備的吹脫法相比,超重力法吹脫法具有以下幾點優勢:
(1)設備體積質量小,設備及基建費用少,過程放大容易,啟動、停車迅速,運行更穩定;
(2)擺脫了重力場的影響,對物料粘度適應性廣,操作彈性大;
(3)氣相動力消耗小,物料停留時間短,傳質系數大;
(4)去除氨氮效率高,有利於氣相中氨的回收利用:
(5)能夠增加水中的溶解氧,為可能的後續生化處理提供充足氧源。但是目前超重力法吹脫氨氮技術的大規模工業應用較少,主要是因為該技術不夠成熟。特別是大型的結構,仍需要根據具體的物系進行合理設計和試驗。
1.2 離子交換法
離子交換法是一種特殊的吸附過程即交換吸附。其主要機理是:利用離子間的濃度差和交換劑上的功能基對離子的親和力作為推動力達到吸附特定離子的目的。吸附過程是可逆的,吸附飽和的交換劑通過添加特定的解吸液可對交換劑上吸附的離子進行解吸,從而實現交換劑的循環使用。常見的交換劑有沸石等天然交換劑和人工合成的離子交換樹脂兩大類,而後者還可根據樹脂上功能團的不同分為陽離子交換樹脂和陰離子交換樹脂。
天然沸石(主要是斜發沸石)對NH+4具有強的選擇吸附能力,並且天然沸石的價格低於人工合成的離子交換樹脂。因此,工程上常用沸石對NH+4的強選擇性,將NH+4截留於沸石表面,從而去除廢水中的氨氮。pH值=4~8是沸石離子交換的最佳范圍。當pH值<4時,H+與NH+4發生競爭;pH值>8時,NH+4變為NH3,從而失去離子交換性能。但是沸石交換容量容易飽和,吸附容量低,更換頻繁,飽和後的沸石需再生才能再次使用。
離子交換樹脂主要是利用特定陽離子交換樹脂與水中的NH+4進行交換,交換後的樹脂再通過解吸而還原。與沸石相比,強酸型陽離子交換樹脂吸附容量大,處理效果穩定,但目前對強酸型陽離子交換樹脂的研究多處於實驗室階段。
離子交換法的優點是去除率高,適用於處理中低濃度的氨氮廢水。處理含氨氮10mg/L~20mg/L的城市污水,出水濃度可達1mg/L以下。但對於高濃度的氨氮廢水,會造成短時間交換劑飽和,從而再生頻繁,使處理成本增大,且再生液仍為高濃度氨氮廢水,仍需進一步處理。在實際工程應用中,離子交換法常結合其它污水處理工藝來處理高濃度氨氮廢水,先用其它方法作預處理,使經預處理後的廢水濃度在100mg/L左右,然後再用離子交換法處理剩餘氨氮廢水。
1.3 折點氯化法
折點氯化法是將氯氣通入氨氮廢水中達到某一點,在該點時水中游離氯含量最低,而氨氮的濃度降為零。當通入的氯氣量超過該點時,水中的游離氯就會增多,該點稱為折點,該狀態下的氯化稱為折點氯化,折點氯化法的原理就是氯氣與氨反應生成了無害的氮氣。加氯量對反應有很大影響,當氯的投加量與氨的摩爾比為1∶1時,化合余氯增加,主要為氯氨。當該比例為1.5∶1時余氯下降至最低點即「折點」,反應方程式為:NH+4+1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl-。pH值也是主要影響因素,pH值高時產生NO-3,低時產生NCl3。為了保證完全反應,通常pH值控制在6~8,一般加9mg~10mg的氯氣可氧化1mg氨氮。
折點加氯法的優點是氨氮去除率高(可達90%~100%),不受水溫影響,處理效果穩定,反應迅速完全,設備投資少,並有消毒作用。缺點是由於在處理氨氮廢水中要調節pH值,處理成本較高。同時液氯使用安全要求高且貯存時要求的環境條件高。另外,折點加氯法處理氨氮廢水後會產生副產物氯代有機物和氯胺,會給環境帶來二次污染。因此,折點氯化法多用於較低濃度氨氮廢水,適用於廢水的深度處理,工業上一般用於給水處理,對於大水量高濃度氨氮廢水不適合。
1.4 化學沉澱法
化學沉澱法去除廢水中氨氮的原理是:向氨氮廢水中投加磷酸鹽和鎂鹽,使廢水中的氨氮與磷酸鹽和鎂鹽生成一種難溶性的磷酸氨鎂沉澱(MgNH4PO4•6H2O),從而達到去除廢水中氨氮的目的。
磷酸銨鎂(MAP)又稱鳥糞石,可溶於熱水和稀酸,不溶於醇類、磷酸氨以及磷酸鈉的水溶液,遇鹼易分解、在空氣中不穩定,升溫至100℃時便會失水變為無機鹽,繼續加熱至融化(約600℃)則會分解成焦磷酸鎂。MAP可以用作飼料和肥料的添加劑,是一種很好的長效復合肥;也可用於塗料生產、氨基甲酸酯、軟泡阻燃劑製造和醫葯行業。因此,磷酸銨鎂脫氮除磷技術既可以去除廢水中的氨氮,又可回收較有經濟價值的MAP,達到變廢為寶的目的。
化學沉澱法的優點是工藝簡單、效率高,經處理後產生的沉澱物MAP經進一步加工處理後,能成為性能優良的農家復合肥料。缺點是處理成本高。在處理氨氮廢水過程中需加入大量價格昂貴的混凝劑。此外,去除1gNH+4-N可產生8.35gNaCl,由此帶來的高鹽度將會影響後續生物處理的微生物活性。因此,該方法一直停留在實驗室規模未在工程上運用,較少用於實際氨氮廢水處理。
1.5 膜分離法
膜分離法包括反滲透法、液膜法、電滲析法等。
1.5.1 反滲透法
反滲透就是藉助外界的壓力使膜內部的壓力大於膜外的壓力,使小於膜孔徑的分子(水)透過,大於膜孔徑的分子截留在膜內,這種作用現象稱作反滲透。其作用機理關鍵在於半透膜的選擇透過性,半透膜上有好多細小的微孔,像水分子這樣的小分子可以自由的透過,而大於半透膜上微孔的NH+4則不能通過。當溶液進入膜系統後,在外加壓力的作用下半透膜就會選擇性的讓某些小分子物質透過,大分子物質NH+4則會留在半透膜內側通過管道另外的出口排出。
反滲透裝置處理廢水需要對原水進行預處理,不然會損壞裝置內的膜件,並且該裝置需要高質量的膜。
1.5.2 液膜法
液膜法又稱氣態膜法,目前已應用於水溶液中揮發性物質的脫除、回收富集和純化,如NH3、CO2、SO2、Cl2、Br2等。液膜法去除氨氮的機理是:採用疏水性中空纖維微孔膜,膜一側是待處理的氨氮廢水,另一側是酸性吸收液,疏水的微孔結構在兩液相間提供一層很薄的氣膜結構。廢水中NH3在廢水側通過濃度邊界層擴散至疏水微孔膜表面,隨後在膜兩側NH3分壓差的推動下,NH3在廢水和微孔膜界面處氣化進入膜孔,然後擴散進入吸收液發生快速不可逆反應,從而達到脫除氨氮的目的。
液膜法具有比表面積大,傳質推動力高,操作彈性大,氨氮脫除率高,無二次污染等優勢,適合處理含鹽量較高、油性污染物含量低的高氨氮廢水。氨氮或含鹽量較高時,能有效抑制水的滲透蒸餾通量,減弱對吸收液的稀釋作用;但當廢水中含有油性污染物時,會造成膜的污染,使膜的傳質系數不能得到完全恢復。由於廢水的復雜性、膜材料的研發更新換代、可逆吸收劑的研發以及後續副產品的生產應用等多種原因,氣態膜法脫氨工業化進程很慢,國內生產應用實例較少。不過對於高鹽高濃度氨氮廢水,氣態膜處理成本較低,其應用前景廣闊。
1.5.3 電滲析法
電滲析法的原理是:當進水通過多組陰陽離子滲透膜時,NH+4在施加的電壓影響下,透過膜到達膜另一側濃水中並集聚,從而從進水中分離出來,實現溶液的淡化、濃縮、精製和提純。國內外專家在電滲析法處理氨氮廢水方面作了大量研究,並取得了一定成績。但由於高選擇性的防污膜仍在發展中,且對廢水預處理的要求很高,電滲析法用於工業尚需時日。
1.6 高級氧化法
高級氧化法是通過化學、物理化學方法將廢水中污染物直接氧化成無機物,或將其轉化為低毒、易降解的中間產物。應用於脫除廢水中氨氮的高級氧化法主要有濕式催化氧化法和光催化氧化法。
1.6.1 濕式催化氧化法
濕式催化氧化法是20世紀80年代國際上發展起來的一種治理廢水的新技術,其原理是:在特定的溫度、壓力下,通過催化劑作用,經空氣氧化可使污水中的有機物和氨氮分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。
濕式催化氧化法技術優點是:氨氮負荷高,工藝流程簡單,氨氮去除率高,佔地面積少等。缺點是:在處理氨氮廢水中會使用大量催化劑,造成催化劑的流失和增加對設備的腐蝕,使氨氮廢水處理成本增大。
濕式催化氧化法從處理效果上來說適合高濃度氨氮廢水的處理,但這種方法對溫度、壓力、催化劑等條件要求非常嚴格,反應設備須抗酸抗鹼耐高壓,一次性投資巨大,而且處理水量較大時費用很高,經濟上不劃算,目前在國內還鮮有工程應用的實例。
1.6.2 光催化氧化法
光催化氧化法是最近發展起來的一種處理廢水的高級氧化技術,它可以使廢水中的有機物在特定氧化劑的作用下完全分解為簡單的無機物CO2和H2O,達到降解污染物的目的,處理方法簡單高效,沒有二次污染。但由於反應過程中需要的催化劑難以分離回收,使該方法在實際工程中一定程度上受到了限制。
1.7 電解法
電解法利用陽極氧化性可直接或間接地將NH+4氧化,具有較高的氨氮去除率,該方法操作簡便,自動化程度高,其缺點是耗電量大,因此並不適用於大規模含氨氮廢水的處理。
1.8 土壤灌溉法
土壤灌溉法是把低濃度的氨氮廢水(50mg/L)作為農作物的肥料來使用,該法既為污灌區農業提供了穩定的水源,又避免了水體富營養化,提高了水資源利用率。土壤灌溉法只適合處理低濃度氨氮廢水,當廢水中的氨氮濃度低於50mg/L左右時,廢水中的氨氮在土壤表層發生硝化作用,在土壤深度30cm左右達到峰值,隨後由於脫氮等作用,在100cm處減小到10mg/L左右,在400cm以下土壤中未測出NH+4,直接污染到地下水的可能性幾乎為零。
2、生物法
生物脫氨氮的原理:首先通過硝化作用將氨氮氧化成亞硝酸氮(NO-2-N),再通過硝化作用將亞硝酸氮進一步氧化為硝酸氮(NO3-N),最後通過反硝化作用將硝酸氮還原成氮氣(N2)從水中逸出。
生物法的優點是:可去除多種含氮化合物,對氨氮可以徹底降解,總氨氮去除率可達95%以上,二次污染小且運行費用低。然而生物法對水質有嚴格的要求,高濃度的氨氮對微生物活性有抑製作用,會降低生化系統對有機污染物的降解效率,從而導致出水難於達標排放。
因此,生物法主要用來處理低濃度的氨氮廢水,且沒有或少有毒害物質存在,主要在處理生活污水以及垃圾滲濾液等方面應用較廣泛。常見的氨氮廢水生物處理工藝有傳統硝化反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、氧化溝和SBR。
3、方法比較
根據廢水中氨氮濃度不同可將廢水分為三類:
(1)低濃度氨氮廢水:氨氮濃度小於50mg/L;
(2)中濃度氨氮廢水:氨氮濃度為50mg/L~500mg/L;
(3)高濃度氨氮廢水:氨氮濃度大於500mg/L。

Ⅷ 反滲透設備的工作原理和流程

反滲透設備工作原理:

反滲透設備是將原水經過精細過濾器、顆粒活性碳過濾器、壓縮活性碳過濾器等,再通過泵加壓,利用孔徑為1/10000μm(相當於大腸桿菌大小的1/6000,病毒的1/300)的反滲透膜(RO膜),使較高濃度的水變為低濃度水,同時將工業污染物、重金屬、細菌、病毒等大量混入水中的雜質全部隔離,從而達到飲用規定的理化指標及衛生標准,產出至清至純的水,是人體及時補充優質水份的最佳選擇.由於RO反滲透技術生產的水純凈度是目前人類掌握的一切制水技術中最高的,潔凈度幾乎達到100%,所以人們稱這種產水機器為反滲透純凈水機


反滲透設備流程

1、反滲透設備原水罐儲存原水,用於沉澱水中的大泥沙顆粒及其它可沉澱物質。同時緩沖原水管中水壓不穩定對水處理系統造成的沖擊。(如水壓過低或過高引起的壓力感測的反應)。

2、多介質過濾器採用多次過濾層的過濾器,主要目的是去除原水中含有的泥沙、鐵銹、膠體物質、懸浮物等顆粒在20um以上的物質,可選用手動閥門控制或者全自動控制器進行反沖洗、正沖洗等一系列操作。

3、活性炭過濾器系統採用果殼活性炭過濾器,活性炭不但可吸附電解質離子,還可進行離子交換吸附。經活性炭吸附還可使高錳酸鉀耗氧量(COD)由15mg/L(O2)降至2~7mg/L(O2),此外,由於吸附作用使表面被吸附復制的濃度增加,因而還起到催化作用、去除水中的色素、異味、大量生化有機物、降低水的余氯值及農葯污染物和除去水中的三鹵化物(THM)以及其它的污染物。

4、離子軟化系統/加葯系統,R/O裝置為了溶解固體形物的濃縮排放和淡水的利用,為防止濃水端特別是RO裝置後一根膜組件濃水側出現CaCO3、MgCO3、MgSO4、CaSO4、BaSO4、SrSO4、SiSO4等物質的濃度大於其平衡溶解度常數而結晶析出,損壞膜原件的應有特性,在進入反滲透膜組件之前,應使用離子軟化裝置或投放適量的阻垢劑,阻止碳酸鹽、SiO2、硫酸鹽的晶體析出。

5、精密過濾器採用精密過濾器對進水中殘留的懸浮物、非曲直粒物及膠體等物質去除,使RO系統等後續設備運行安全、更可靠。精密過濾器的濾芯為5μm熔噴濾芯、目的防止上級過濾單元,漏掉的大於5μm的雜質除去。防止進入反滲透裝置損壞膜的表面,從而損壞膜的脫鹽性能。

6、反滲透設備反滲透系統反滲透裝置是用足夠的壓力使溶液中的溶劑(一般是水)通過反滲透膜(或稱半透膜)而分離出來,因為這個過程和自然滲透的方向相反,因此稱為反滲透。反滲透法能適應各類含鹽量的原水,尤其是在高含鹽量的水處理工程中,能獲得很好的技術經濟效益。

閱讀全文

與半透膜管道系統相關的資料

熱點內容
頤博污水泵怎麼樣呀 瀏覽:198
污水廠生化池泥多怎麼看 瀏覽:280
什麼是污水超越管 瀏覽:676
武勝哪裡有修凈水器的 瀏覽:12
飲水機旁邊用什麼警示語 瀏覽:143
污水處理廢棄的葯劑排放到哪裡 瀏覽:885
新化縣污水處理廠多少畝 瀏覽:799
無憂凈水器和九芯哪個好 瀏覽:864
重慶蒸餾水生產企業 瀏覽:112
豬場污水處理在什麼時候補充原水 瀏覽:252
有關樹脂分層充填書本 瀏覽:216
魚缸里放樹脂擺件可以嗎 瀏覽:227
減壓蒸餾為什麼用毛細管 瀏覽:726
黔南州農村污水 瀏覽:882
市政污水管網有哪些設備 瀏覽:792
烤箱凈化器雙層什麼意思 瀏覽:751
污水一立方米等於多少噸 瀏覽:816
汽車濾芯破裂會有什麼後果 瀏覽:769
灝溪凈水器哪裡有賣 瀏覽:438
水嘴凈水器怎麼樣 瀏覽:39